Python net.Discriminator() Examples
The following are 2
code examples of net.Discriminator().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
net
, or try the search function
.
Example #1
Source File: solver_makeup.py From BeautyGAN_pytorch with MIT License | 5 votes |
def build_model(self): # Define generators and discriminators if self.whichG=='normal': self.G = net.Generator_makeup(self.g_conv_dim, self.g_repeat_num) if self.whichG=='branch': self.G = net.Generator_branch(self.g_conv_dim, self.g_repeat_num) for i in self.cls: setattr(self, "D_" + i, net.Discriminator(self.img_size, self.d_conv_dim, self.d_repeat_num, self.norm)) self.criterionL1 = torch.nn.L1Loss() self.criterionL2 = torch.nn.MSELoss() self.criterionGAN = GANLoss(use_lsgan=True, tensor =torch.cuda.FloatTensor) self.vgg = net.VGG() self.vgg.load_state_dict(torch.load('addings/vgg_conv.pth')) # Optimizers self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2]) for i in self.cls: setattr(self, "d_" + i + "_optimizer", \ torch.optim.Adam(filter(lambda p: p.requires_grad, getattr(self, "D_" + i).parameters()), \ self.d_lr, [self.beta1, self.beta2])) # Weights initialization self.G.apply(self.weights_init_xavier) for i in self.cls: getattr(self, "D_" + i).apply(self.weights_init_xavier) # Print networks self.print_network(self.G, 'G') for i in self.cls: self.print_network(getattr(self, "D_" + i), "D_" + i) if torch.cuda.is_available(): self.G.cuda() self.vgg.cuda() for i in self.cls: getattr(self, "D_" + i).cuda()
Example #2
Source File: solver_cycle.py From BeautyGAN_pytorch with MIT License | 5 votes |
def build_model(self): # Define generators and discriminators self.G_A = net.Generator(self.g_conv_dim, self.g_repeat_num) self.G_B = net.Generator(self.g_conv_dim, self.g_repeat_num) self.D_A = net.Discriminator(self.img_size, self.d_conv_dim, self.d_repeat_num) self.D_B = net.Discriminator(self.img_size, self.d_conv_dim, self.d_repeat_num) self.criterionL1 = torch.nn.L1Loss() self.criterionGAN = GANLoss(use_lsgan=True, tensor =torch.cuda.FloatTensor) # Optimizers self.g_optimizer = torch.optim.Adam(itertools.chain(self.G_A.parameters(), self.G_B.parameters()), self.g_lr, [self.beta1, self.beta2]) self.d_A_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.D_A.parameters()), self.d_lr, [self.beta1, self.beta2]) self.d_B_optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.D_B.parameters()), self.d_lr, [self.beta1, self.beta2]) self.G_A.apply(self.weights_init_xavier) self.D_A.apply(self.weights_init_xavier) self.G_B.apply(self.weights_init_xavier) self.D_B.apply(self.weights_init_xavier) # Print networks # self.print_network(self.E, 'E') self.print_network(self.G_A, 'G_A') self.print_network(self.D_A, 'D_A') self.print_network(self.G_B, 'G_B') self.print_network(self.D_B, 'D_B') if torch.cuda.is_available(): self.G_A.cuda() self.G_B.cuda() self.D_A.cuda() self.D_B.cuda()