Python keras.initializers.glorot_normal() Examples
The following are 23
code examples of keras.initializers.glorot_normal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.initializers
, or try the search function
.
Example #1
Source File: layers.py From deepar with MIT License | 6 votes |
def build(self, input_shape): n_weight_rows = input_shape[2] self.kernel_1 = self.add_weight(name='kernel_1', shape=(n_weight_rows, self.output_dim), initializer=glorot_normal(), trainable=True) self.kernel_2 = self.add_weight(name='kernel_2', shape=(n_weight_rows, self.output_dim), initializer=glorot_normal(), trainable=True) self.bias_1 = self.add_weight(name='bias_1', shape=(self.output_dim,), initializer=glorot_normal(), trainable=True) self.bias_2 = self.add_weight(name='bias_2', shape=(self.output_dim,), initializer=glorot_normal(), trainable=True) super(GaussianLayer, self).build(input_shape)
Example #2
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_glorot_normal_1(input_shape): # `"glorot_normal"` model = Sequential( [ Dense(Integer(50, 100), input_shape=input_shape), Dense(1, kernel_initializer="glorot_normal"), ] ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model #################### `orthogonal` - Excluding default (`Initializer`) ####################
Example #3
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def test_in_categorical_4(self, old_opt): # `Categorical(["glorot_normal", O(gain=1)])` assert in_similar_experiment_ids(old_opt, self.opt_g_4)
Example #4
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def test_in_categorical_3(self, old_opt): # `Categorical(["glorot_normal", o(gain=1)])` assert in_similar_experiment_ids(old_opt, self.opt_g_3)
Example #5
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def test_in_categorical_2(self, old_opt): # `Categorical([glorot_normal(), O()])` assert in_similar_experiment_ids(old_opt, self.opt_g_2)
Example #6
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def test_in_categorical_0(self, old_opt): # `Categorical(["glorot_normal", "o"])` assert in_similar_experiment_ids(old_opt, self.opt_g_0)
Example #7
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def test_in_space_inclusive_callable(self, old_opt, new_opt): assert in_similar_experiment_ids(old_opt, new_opt) ################################################## # `glorot_normal` (`VarianceScaling`) ##################################################
Example #8
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_categorical_4(input_shape): # `Categorical(["glorot_normal", Orthogonal(gain=1)])` model = Sequential( [ Dense(Integer(50, 100), input_shape=input_shape), Dense(1, kernel_initializer=Categorical(["glorot_normal", Orthogonal(gain=1)])), ] ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model
Example #9
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_categorical_3(input_shape): # `Categorical(["glorot_normal", orthogonal(gain=1)])` model = Sequential( [ Dense(Integer(50, 100), input_shape=input_shape), Dense(1, kernel_initializer=Categorical(["glorot_normal", orthogonal(gain=1)])), ] ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model
Example #10
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_categorical_2(input_shape): # `Categorical([glorot_normal(), Orthogonal()])` model = Sequential( [ Dense(Integer(50, 100), input_shape=input_shape), Dense(1, kernel_initializer=Categorical([glorot_normal(), Orthogonal()])), ] ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model
Example #11
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_categorical_0(input_shape): # `Categorical(["glorot_normal", "orthogonal"])` model = Sequential( [ Dense(Integer(50, 100), input_shape=input_shape), Dense(1, kernel_initializer=Categorical(["glorot_normal", "orthogonal"])), ] ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model
Example #12
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_glorot_normal_0(input_shape): # `glorot_normal()` model = Sequential( [ Dense(Integer(50, 100), input_shape=input_shape), Dense(1, kernel_initializer=glorot_normal()), ] ) model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) return model
Example #13
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def run_initialization_matching_optimization_0(build_fn): optimizer = DummyOptPro(iterations=1) optimizer.forge_experiment( model_initializer=KerasClassifier, model_init_params=dict(build_fn=build_fn), model_extra_params=dict(epochs=1, batch_size=128, verbose=0), ) optimizer.go() return optimizer #################### `glorot_normal` (`VarianceScaling`) ####################
Example #14
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def _build_fn_regressor(input_shape): model = Sequential( [ Dense(100, activation="relu", input_shape=input_shape), Dense(Integer(40, 60), activation="relu", kernel_initializer="glorot_normal"), Dropout(Real(0.2, 0.7)), Dense(1, activation=Categorical(["relu", "sigmoid"]), kernel_initializer="orthogonal"), ] ) model.compile( optimizer=Categorical(["adam", "rmsprop"]), loss="mean_absolute_error", metrics=["mean_absolute_error"], ) return model
Example #15
Source File: submission_v50.py From Quora with MIT License | 5 votes |
def get_model(embed_weights): input_layer = Input(shape=(MAX_LEN, ), name='input') # 1. embedding layer # get embedding weights print('load pre-trained embedding weights ......') input_dim = embed_weights.shape[0] output_dim = embed_weights.shape[1] x = Embedding( input_dim=input_dim, output_dim=output_dim, weights=[embed_weights], trainable=False, name='embedding' )(input_layer) # clean up del embed_weights, input_dim, output_dim gc.collect() # 2. dropout x = SpatialDropout1D(rate=SPATIAL_DROPOUT)(x) # 3. bidirectional lstm x = Bidirectional( layer=CuDNNLSTM(RNN_UNITS, return_sequences=True, kernel_initializer=glorot_normal(seed=1029), recurrent_initializer=orthogonal(gain=1.0, seed=1029)), name='bidirectional_lstm')(x) # 4. capsule layer capsul = Capsule(num_capsule=10, dim_capsule=10, routings=4, share_weights=True)(x) # noqa capsul = Flatten()(capsul) capsul = DropConnect(Dense(32, activation="relu"), prob=0.01)(capsul) # 5. attention later atten = Attention(step_dim=MAX_LEN, name='attention')(x) atten = DropConnect(Dense(16, activation="relu"), prob=0.05)(atten) x = Concatenate(axis=-1)([capsul, atten]) # 6. output (sigmoid) output_layer = Dense(units=1, activation='sigmoid', name='output')(x) model = Model(inputs=input_layer, outputs=output_layer) # compile model model.compile(loss='binary_crossentropy', optimizer='adam') return model
Example #16
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #17
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #18
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #19
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #20
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #21
Source File: keras_utils.py From Benchmarks with MIT License | 4 votes |
def build_initializer(type, kerasDefaults, seed=None, constant=0.): """ Set the initializer to the appropriate Keras initializer function based on the input string and learning rate. Other required values are set to the Keras default values Parameters ---------- type : string String to choose the initializer Options recognized: 'constant', 'uniform', 'normal', 'glorot_uniform', 'lecun_uniform', 'he_normal' See the Keras documentation for a full description of the options kerasDefaults : list List of default parameter values to ensure consistency between frameworks seed : integer Random number seed constant : float Constant value (for the constant initializer only) Return ---------- The appropriate Keras initializer function """ if type == 'constant': return initializers.Constant(value=constant) elif type == 'uniform': return initializers.RandomUniform(minval=kerasDefaults['minval_uniform'], maxval=kerasDefaults['maxval_uniform'], seed=seed) elif type == 'normal': return initializers.RandomNormal(mean=kerasDefaults['mean_normal'], stddev=kerasDefaults['stddev_normal'], seed=seed) # Not generally available # elif type == 'glorot_normal': # return initializers.glorot_normal(seed=seed) elif type == 'glorot_uniform': return initializers.glorot_uniform(seed=seed) elif type == 'lecun_uniform': return initializers.lecun_uniform(seed=seed) elif type == 'he_normal': return initializers.he_normal(seed=seed)
Example #22
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #23
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_glorot_normal(tensor_shape): fan_in, fan_out = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / (fan_in + fan_out)) _runner(initializers.glorot_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)