Python keras.initializers.orthogonal() Examples

The following are 19 code examples of keras.initializers.orthogonal(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module keras.initializers , or try the search function .
Example #1
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_glorot_normal_1(input_shape):  # `"glorot_normal"`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer="glorot_normal"),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model


#################### `orthogonal` - Excluding default (`Initializer`) #################### 
Example #2
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def test_in_custom_arg_callable(self, old_opt, new_opt):
        assert in_similar_experiment_ids(old_opt, new_opt)

    ##################################################
    # `orthogonal` - Including default (`Initializer`)
    ################################################## 
Example #3
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_categorical_1(input_shape):  # `Categorical([glorot_normal(), orthogonal()])`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=Categorical([glorot_normal(), orthogonal()])),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #4
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_categorical_0(input_shape):  # `Categorical(["glorot_normal", "orthogonal"])`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=Categorical(["glorot_normal", "orthogonal"])),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #5
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_orthogonal_i_5(input_shape):  # `orthogonal(gain=Real(0.6, 1.6))`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=orthogonal(gain=Real(0.6, 1.6))),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #6
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_orthogonal_i_3(input_shape):  # `orthogonal(gain=1.0)`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=orthogonal(gain=1.0)),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #7
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_orthogonal_i_1(input_shape):  # `orthogonal()`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=orthogonal()),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #8
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_orthogonal_e_3(input_shape):  # `Orthogonal(gain=0.5)`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=Orthogonal(gain=0.5)),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model


#################### `orthogonal` - Including default (`Initializer`) #################### 
Example #9
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_orthogonal_e_2(input_shape):  # `orthogonal(gain=0.5)`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=orthogonal(gain=0.5)),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #10
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_orthogonal_e_0(input_shape):  # `orthogonal(gain=Real(0.3, 0.9))`
    model = Sequential(
        [
            Dense(Integer(50, 100), input_shape=input_shape),
            Dense(1, kernel_initializer=orthogonal(gain=Real(0.3, 0.9))),
        ]
    )
    model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
    return model 
Example #11
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.) 
Example #12
Source File: test_keras.py    From hyperparameter_hunter with MIT License 5 votes vote down vote up
def _build_fn_regressor(input_shape):
    model = Sequential(
        [
            Dense(100, activation="relu", input_shape=input_shape),
            Dense(Integer(40, 60), activation="relu", kernel_initializer="glorot_normal"),
            Dropout(Real(0.2, 0.7)),
            Dense(1, activation=Categorical(["relu", "sigmoid"]), kernel_initializer="orthogonal"),
        ]
    )
    model.compile(
        optimizer=Categorical(["adam", "rmsprop"]),
        loss="mean_absolute_error",
        metrics=["mean_absolute_error"],
    )
    return model 
Example #13
Source File: submission_v50.py    From Quora with MIT License 5 votes vote down vote up
def get_model(embed_weights):
    input_layer = Input(shape=(MAX_LEN, ), name='input')
    # 1. embedding layer
    # get embedding weights
    print('load pre-trained embedding weights ......')
    input_dim = embed_weights.shape[0]
    output_dim = embed_weights.shape[1]
    x = Embedding(
        input_dim=input_dim,
        output_dim=output_dim,
        weights=[embed_weights],
        trainable=False,
        name='embedding'
    )(input_layer)
    # clean up
    del embed_weights, input_dim, output_dim
    gc.collect()
    # 2. dropout
    x = SpatialDropout1D(rate=SPATIAL_DROPOUT)(x)
    # 3. bidirectional lstm
    x = Bidirectional(
        layer=CuDNNLSTM(RNN_UNITS, return_sequences=True,
                        kernel_initializer=glorot_normal(seed=1029),
                        recurrent_initializer=orthogonal(gain=1.0, seed=1029)),
        name='bidirectional_lstm')(x)
    # 4. capsule layer
    capsul = Capsule(num_capsule=10, dim_capsule=10, routings=4, share_weights=True)(x) # noqa
    capsul = Flatten()(capsul)
    capsul = DropConnect(Dense(32, activation="relu"), prob=0.01)(capsul)

    # 5. attention later
    atten = Attention(step_dim=MAX_LEN, name='attention')(x)
    atten = DropConnect(Dense(16, activation="relu"), prob=0.05)(atten)
    x = Concatenate(axis=-1)([capsul, atten])

    # 6. output (sigmoid)
    output_layer = Dense(units=1, activation='sigmoid', name='output')(x)
    model = Model(inputs=input_layer, outputs=output_layer)
    # compile model
    model.compile(loss='binary_crossentropy', optimizer='adam')
    return model 
Example #14
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.) 
Example #15
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.) 
Example #16
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.) 
Example #17
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.) 
Example #18
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.) 
Example #19
Source File: initializers_test.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def test_orthogonal(tensor_shape):
    _runner(initializers.orthogonal(), tensor_shape,
            target_mean=0.)