Python keras.initializers.he_normal() Examples
The following are 11
code examples of keras.initializers.he_normal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.initializers
, or try the search function
.
Example #1
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #2
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #3
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #4
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #5
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #6
Source File: mobilenets.py From keras-one-cycle with MIT License | 4 votes |
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1), bn_epsilon=1e-3, bn_momentum=0.99, weight_decay=0., block_id=1): """Adds an initial convolution layer (with batch normalization and relu6). # Arguments inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. bn_epsilon: Epsilon value for BatchNormalization bn_momentum: Momentum value for BatchNormalization # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. # Returns Output tensor of block. """ channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 filters = filters * alpha filters = _make_divisible(filters) x = Conv2D(filters, kernel, padding='same', use_bias=False, strides=strides, kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay), name='conv%d' % block_id)(inputs) x = BatchNormalization(axis=channel_axis, momentum=bn_momentum, epsilon=bn_epsilon, name='conv%d_bn' % block_id)(x) return Activation(relu6, name='conv%d_relu' % block_id)(x)
Example #7
Source File: model.py From keras-one-cycle with MIT License | 4 votes |
def _conv_block(inputs, filters, kernel=(3, 3), strides=(1, 1), bn_epsilon=1e-3, bn_momentum=0.99, weight_decay=0., block_id=1): """Adds an initial convolution layer (with batch normalization and relu6). # Arguments inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. bn_epsilon: Epsilon value for BatchNormalization bn_momentum: Momentum value for BatchNormalization # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. # Returns Output tensor of block. """ channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 filters = _make_divisible(filters) x = Conv2D(filters, kernel, padding='same', use_bias=False, strides=strides, kernel_initializer=initializers.he_normal(), kernel_regularizer=regularizers.l2(weight_decay), name='conv%d' % block_id)(inputs) x = BatchNormalization(axis=channel_axis, momentum=bn_momentum, epsilon=bn_epsilon, name='conv%d_bn' % block_id)(x) return Activation(relu6, name='conv%d_relu' % block_id)(x)
Example #8
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #9
Source File: initializers_test.py From DeepLearning_Wavelet-LSTM with MIT License | 4 votes |
def test_he_normal(tensor_shape): fan_in, _ = initializers._compute_fans(tensor_shape) scale = np.sqrt(2. / fan_in) _runner(initializers.he_normal(), tensor_shape, target_mean=0., target_std=None, target_max=2 * scale)
Example #10
Source File: densenet_multi_gpu.py From cifar-10-cnn with MIT License | 4 votes |
def densenet(img_input,classes_num): def bn_relu(x): x = BatchNormalization()(x) x = Activation('relu')(x) return x def bottleneck(x): channels = growth_rate * 4 x = bn_relu(x) x = Conv2D(channels,kernel_size=(1,1),strides=(1,1),padding='same',kernel_initializer=he_normal(),kernel_regularizer=regularizers.l2(weight_decay),use_bias=False)(x) x = bn_relu(x) x = Conv2D(growth_rate,kernel_size=(3,3),strides=(1,1),padding='same',kernel_initializer=he_normal(),kernel_regularizer=regularizers.l2(weight_decay),use_bias=False)(x) return x def single(x): x = bn_relu(x) x = Conv2D(growth_rate,kernel_size=(3,3),strides=(1,1),padding='same',kernel_initializer=he_normal(),kernel_regularizer=regularizers.l2(weight_decay),use_bias=False)(x) return x def transition(x, inchannels): outchannels = int(inchannels * compression) x = bn_relu(x) x = Conv2D(outchannels,kernel_size=(1,1),strides=(1,1),padding='same',kernel_initializer=he_normal(),kernel_regularizer=regularizers.l2(weight_decay),use_bias=False)(x) x = AveragePooling2D((2,2), strides=(2, 2))(x) return x, outchannels def dense_block(x,blocks,nchannels): concat = x for i in range(blocks): x = bottleneck(concat) concat = concatenate([x,concat], axis=-1) nchannels += growth_rate return concat, nchannels def dense_layer(x): return Dense(classes_num,activation='softmax',kernel_initializer=he_normal(),kernel_regularizer=regularizers.l2(weight_decay))(x) nblocks = (depth - 4) // 6 nchannels = growth_rate * 2 x = Conv2D(nchannels,kernel_size=(3,3),strides=(1,1),padding='same',kernel_initializer=he_normal(),kernel_regularizer=regularizers.l2(weight_decay),use_bias=False)(img_input) x, nchannels = dense_block(x,nblocks,nchannels) x, nchannels = transition(x,nchannels) x, nchannels = dense_block(x,nblocks,nchannels) x, nchannels = transition(x,nchannels) x, nchannels = dense_block(x,nblocks,nchannels) x, nchannels = transition(x,nchannels) x = bn_relu(x) x = GlobalAveragePooling2D()(x) x = dense_layer(x) return x
Example #11
Source File: keras_utils.py From Benchmarks with MIT License | 4 votes |
def build_initializer(type, kerasDefaults, seed=None, constant=0.): """ Set the initializer to the appropriate Keras initializer function based on the input string and learning rate. Other required values are set to the Keras default values Parameters ---------- type : string String to choose the initializer Options recognized: 'constant', 'uniform', 'normal', 'glorot_uniform', 'lecun_uniform', 'he_normal' See the Keras documentation for a full description of the options kerasDefaults : list List of default parameter values to ensure consistency between frameworks seed : integer Random number seed constant : float Constant value (for the constant initializer only) Return ---------- The appropriate Keras initializer function """ if type == 'constant': return initializers.Constant(value=constant) elif type == 'uniform': return initializers.RandomUniform(minval=kerasDefaults['minval_uniform'], maxval=kerasDefaults['maxval_uniform'], seed=seed) elif type == 'normal': return initializers.RandomNormal(mean=kerasDefaults['mean_normal'], stddev=kerasDefaults['stddev_normal'], seed=seed) # Not generally available # elif type == 'glorot_normal': # return initializers.glorot_normal(seed=seed) elif type == 'glorot_uniform': return initializers.glorot_uniform(seed=seed) elif type == 'lecun_uniform': return initializers.lecun_uniform(seed=seed) elif type == 'he_normal': return initializers.he_normal(seed=seed)