Python sklearn.linear_model.logistic.LogisticRegression() Examples
The following are 13
code examples of sklearn.linear_model.logistic.LogisticRegression().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.linear_model.logistic
, or try the search function
.
Example #1
Source File: test_bounds.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1', solver='liblinear', multi_class='ovr'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert (np.asarray(clf.coef_) == 0).all() assert (np.asarray(clf.intercept_) == 0).all() clf.C = min_c * 1.01 clf.fit(X, y) assert ((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any())
Example #2
Source File: transitions.py From recurrent-slds with MIT License | 6 votes |
def initialize_with_logistic_regression(self, zs, xs): from sklearn.linear_model.logistic import LogisticRegression lr = LogisticRegression(verbose=False, multi_class="multinomial", solver="lbfgs") # Make the covariates K, D = self.num_states, self.covariate_dim zs = zs if isinstance(zs, np.ndarray) else np.concatenate(zs, axis=0) xs = xs if isinstance(xs, np.ndarray) else np.concatenate(xs, axis=0) assert zs.shape[0] == xs.shape[0] assert zs.ndim == 1 and zs.dtype == np.int32 and zs.min() >= 0 and zs.max() < K assert xs.ndim == 2 and xs.shape[1] == D lr_X = xs[:-1] lr_y = zs[1:] lr.fit(lr_X, lr_y) # Now convert the logistic regression into weights used = np.bincount(zs, minlength=K) > 0 self.W = np.zeros((D, K)) self.W[:, used] = lr.coef_.T b = np.zeros((K,)) b[used] += lr.intercept_ b[~used] += -100. self.b = b
Example #3
Source File: logistic_regression.py From lale with Apache License 2.0 | 6 votes |
def __init__(self, penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight='balanced', random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=None): self._hyperparams = { 'penalty': penalty, 'dual': dual, 'tol': tol, 'C': C, 'fit_intercept': fit_intercept, 'intercept_scaling': intercept_scaling, 'class_weight': class_weight, 'random_state': random_state, 'solver': solver, 'max_iter': max_iter, 'multi_class': multi_class, 'verbose': verbose, 'warm_start': warm_start, 'n_jobs': n_jobs} self._wrapped_model = Op(**self._hyperparams)
Example #4
Source File: test_pipeline.py From sparkit-learn with Apache License 2.0 | 6 votes |
def test_pipeline_same_results(self): X, y, Z = self.make_classification(2, 10000, 2000) loc_clf = LogisticRegression() loc_filter = VarianceThreshold() loc_pipe = Pipeline([ ('threshold', loc_filter), ('logistic', loc_clf) ]) dist_clf = SparkLogisticRegression() dist_filter = SparkVarianceThreshold() dist_pipe = SparkPipeline([ ('threshold', dist_filter), ('logistic', dist_clf) ]) dist_filter.fit(Z) loc_pipe.fit(X, y) dist_pipe.fit(Z, logistic__classes=np.unique(y)) assert_true(np.mean(np.abs( loc_pipe.predict(X) - np.concatenate(dist_pipe.predict(Z[:, 'X']).collect()) )) < 0.1)
Example #5
Source File: test_bounds.py From twitter-stock-recommendation with MIT License | 6 votes |
def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any())
Example #6
Source File: train.py From AI_for_Financial_Data with Apache License 2.0 | 5 votes |
def new_grid_search(): """ Create new GridSearch obj with models pipeline """ pipeline = Pipeline([ # TODO some smart preproc can be added here (u"clf", LogisticRegression(class_weight="balanced")), ]) search_params = {"clf__C": (1e-4, 1e-2, 1e0, 1e2, 1e4)} return GridSearchCV( estimator=pipeline, param_grid=search_params, scoring="recall_macro", cv=10, n_jobs=-1, verbose=3, )
Example #7
Source File: 02_ceps_based_classifier.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def create_model(): from sklearn.linear_model.logistic import LogisticRegression clf = LogisticRegression() return clf
Example #8
Source File: 01_fft_based_classifier.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def create_model(): from sklearn.linear_model.logistic import LogisticRegression clf = LogisticRegression() return clf
Example #9
Source File: meta_classifier.py From coling2018_fake-news-challenge with Apache License 2.0 | 5 votes |
def getEstimator(scorer_type): if scorer_type == 'grad_boost': clf = GradientBoostingClassifier(n_estimators=200, random_state=14128, verbose=True) if scorer_type == 'svm1': # stochastic gradient decent classifier clf = svm.SVC(gamma=0.001, C=100., verbose=True) if scorer_type == 'logistic_regression' : clf = logistic.LogisticRegression() if scorer_type == 'svm3': clf = svm.SVC(kernel='poly', C=1.0, probability=True, class_weight='unbalanced') if scorer_type == "bayes": clf = naive_bayes.GaussianNB() if scorer_type == 'voting_hard_svm_gradboost_logistic': svm2 = svm.SVC(kernel='linear', C=1.0, probability=True, class_weight='balanced', verbose=True) log_reg = logistic.LogisticRegression() gradboost = GradientBoostingClassifier(n_estimators=200, random_state=14128, verbose=True) clf = VotingClassifier(estimators=[ # ('gb', gb), ('svm', svm2), ('grad_boost', gradboost), ('logisitc_regression', log_reg) ], n_jobs=1, voting='hard') if scorer_type == 'voting_hard_bayes_gradboost': bayes = naive_bayes.GaussianNB() gradboost = GradientBoostingClassifier(n_estimators=200, random_state=14128, verbose=True) clf = VotingClassifier(estimators=[ # ('gb', gb), ('bayes', bayes), ('grad_boost', gradboost), ], n_jobs=1, voting='hard') return clf
Example #10
Source File: train.py From fraud-detection with Apache License 2.0 | 5 votes |
def new_grid_search(): """ Create new GridSearch obj with models pipeline """ pipeline = Pipeline([ # TODO some smart preproc can be added here (u"clf", LogisticRegression(class_weight="balanced")), ]) search_params = {"clf__C": (1e-4, 1e-2, 1e0, 1e2, 1e4)} return GridSearchCV( estimator=pipeline, param_grid=search_params, scoring="recall_macro", cv=10, n_jobs=-1, verbose=3, )
Example #11
Source File: test_util.py From cxplain with MIT License | 5 votes |
def get_classification_models(): models = [ LogisticRegression(random_state=1), RandomForestClassifier(n_estimators=64, max_depth=5, random_state=1), ] return models
Example #12
Source File: test_util.py From cxplain with MIT License | 5 votes |
def fit_proxy(explained_model, x, y): if isinstance(explained_model, LogisticRegression): y_cur = np.argmax(y, axis=-1) else: y_cur = y explained_model.fit(x, y_cur)
Example #13
Source File: transitions.py From recurrent-slds with MIT License | 4 votes |
def initialize_with_logistic_regression(self, zs, xs, initialize=False): from sklearn.linear_model.logistic import LogisticRegression if not hasattr(self, '_lr'): self._lr = LogisticRegression(verbose=False, multi_class="multinomial", solver="lbfgs", warm_start=True, max_iter=10) lr = self._lr # Make the covariates K, D = self.num_states, self.covariate_dim # Split zs into prevs and nexts zps = zs[:-1] if isinstance(zs, np.ndarray) else np.concatenate([z[:-1] for z in zs], axis=0) zns = zs[1:] if isinstance(zs, np.ndarray) else np.concatenate([z[1:] for z in zs], axis=0) xps = xs[:-1] if isinstance(xs, np.ndarray) else np.concatenate([x[:-1] for x in xs], axis=0) assert zps.shape[0] == xps.shape[0] assert zps.ndim == 1 and zps.dtype == np.int32 and zps.min() >= 0 and zps.max() < K assert zns.ndim == 1 and zns.dtype == np.int32 and zns.min() >= 0 and zns.max() < K assert xps.ndim == 2 and xps.shape[1] == D used = np.bincount(zns, minlength=K) > 0 K_used = np.sum(used) lr_X = np.column_stack((one_hot(zps, K), xps)) lr_y = zns # The logistic regression solver fails if we only have one class represented # In this case, set the regression weights to zero and set logpi to have # high probability of the visited class if K_used == 1: self.W = np.zeros((D, K)) self.log_pi = np.zeros((K, K)) self.log_pi[:, used] = 3.0 else: lr.fit(lr_X, lr_y) # Now convert the logistic regression into weights if K_used > 2: self.W = np.zeros((D, K)) self.W[:, used] = lr.coef_[:, K:].T self.logpi = np.zeros((K, K)) self.logpi[:, used] = lr.coef_[:, :K].T self.logpi[:, used] += lr.intercept_[None, :] self.logpi[:, ~used] += -100. elif K_used == 2: # LogisticRegression object only represents one # set of weights for binary problems self.W = np.zeros((D, K)) self.W[:, 1] = lr.coef_[0, K:] self.logpi = np.zeros((K, K)) self.logpi[:, 1] = lr.coef_[0, :K].T self.logpi[:, 1] += lr.intercept_