Python skimage.morphology.convex_hull_image() Examples
The following are 7
code examples of skimage.morphology.convex_hull_image().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
skimage.morphology
, or try the search function
.
Example #1
Source File: getTerminationBifurcation.py From Fingerprint-Feature-Extraction with MIT License | 6 votes |
def getTerminationBifurcation(img, mask): img = img == 255; (rows, cols) = img.shape; minutiaeTerm = np.zeros(img.shape); minutiaeBif = np.zeros(img.shape); for i in range(1,rows-1): for j in range(1,cols-1): if(img[i][j] == 1): block = img[i-1:i+2,j-1:j+2]; block_val = np.sum(block); if(block_val == 2): minutiaeTerm[i,j] = 1; elif(block_val == 4): minutiaeBif[i,j] = 1; mask = convex_hull_image(mask>0) mask = erosion(mask, square(5)) # Structuing element for mask erosion = square(5) minutiaeTerm = np.uint8(mask)*minutiaeTerm return(minutiaeTerm, minutiaeBif)
Example #2
Source File: prepare.py From DeepLung with GNU General Public License v3.0 | 5 votes |
def process_mask(mask): convex_mask = np.copy(mask) for i_layer in range(convex_mask.shape[0]): mask1 = np.ascontiguousarray(mask[i_layer]) if np.sum(mask1)>0: mask2 = convex_hull_image(mask1) if np.sum(mask2)>1.5*np.sum(mask1): mask2 = mask1 else: mask2 = mask1 convex_mask[i_layer] = mask2 struct = generate_binary_structure(3,1) dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) return dilatedMask
Example #3
Source File: volume.py From pyAFQ with BSD 2-Clause "Simplified" License | 5 votes |
def patch_up_roi(roi): """ After being non-linearly transformed, ROIs tend to have holes in them. We perform a couple of computational geometry operations on the ROI to fix that up. Parameters ---------- roi : 3D binary array The ROI after it has been transformed. sigma : float The sigma for initial Gaussian smoothing. truncate : float The truncation for the Gaussian Returns ------- ROI after dilation and hole-filling """ hole_filled = ndim.binary_fill_holes(roi > 0) try: return convex_hull_image(hole_filled) except QhullError: return hole_filled
Example #4
Source File: prepare.py From lung_nodule_detector with MIT License | 5 votes |
def process_mask(mask): convex_mask = np.copy(mask) for i_layer in range(convex_mask.shape[0]): mask1 = np.ascontiguousarray(mask[i_layer]) if np.sum(mask1)>0: mask2 = convex_hull_image(mask1) if np.sum(mask2)>1.5*np.sum(mask1): mask2 = mask1 else: mask2 = mask1 convex_mask[i_layer] = mask2 struct = generate_binary_structure(3,1) dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) return dilatedMask
Example #5
Source File: prepare.py From DeepSEED-3D-ConvNets-for-Pulmonary-Nodule-Detection with MIT License | 5 votes |
def process_mask(mask): convex_mask = np.copy(mask) for i_layer in range(convex_mask.shape[0]): mask1 = np.ascontiguousarray(mask[i_layer]) if np.sum(mask1)>0: mask2 = convex_hull_image(mask1) if np.sum(mask2)>1.5*np.sum(mask1): mask2 = mask1 else: mask2 = mask1 convex_mask[i_layer] = mask2 struct = generate_binary_structure(3,1) dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) return dilatedMask
Example #6
Source File: prepareLIDC.py From DeepSEED-3D-ConvNets-for-Pulmonary-Nodule-Detection with MIT License | 5 votes |
def process_mask(mask): convex_mask = np.copy(mask) for i_layer in range(convex_mask.shape[0]): mask1 = np.ascontiguousarray(mask[i_layer]) if np.sum(mask1)>0: mask2 = convex_hull_image(mask1) if np.sum(mask2)>1.5*np.sum(mask1): mask2 = mask1 else: mask2 = mask1 convex_mask[i_layer] = mask2 struct = generate_binary_structure(3,1) dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10) return dilatedMask
Example #7
Source File: segmentation_labelling.py From kaggle-heart with MIT License | 5 votes |
def wrapper_regions(bestregions, opening_param = 3, mshape = ((0,1,0),(1,1,1),(0,1,0)) ): zdim, xdim, ydim = bestregions.shape wregions = np.zeros_like(bestregions) for sidx in range(zdim): if np.sum(bestregions[sidx]) > 0: wregions[sidx] = convex_hull_image(bestregions[sidx]) return wregions