Python models.get_model() Examples
The following are 30
code examples of models.get_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
models
, or try the search function
.
Example #1
Source File: main.py From dfw with MIT License | 6 votes |
def main(args): set_cuda(args) set_seed(args) loader_train, loader_val, loader_test = get_data_loaders(args) loss = get_loss(args) model = get_model(args) optimizer = get_optimizer(args, parameters=model.parameters()) xp = setup_xp(args, model, optimizer) for i in range(args.epochs): xp.epoch.update(i) train(model, loss, optimizer, loader_train, args, xp) test(model, loader_val, args, xp) if (i + 1) in args.T: decay_optimizer(optimizer, args.decay_factor) load_best_model(model, xp) test(model, loader_test, args, xp)
Example #2
Source File: predict.py From Real-time-Text-Detection with Apache License 2.0 | 6 votes |
def __init__(self, model_path, gpu_id=None): ''' 初始化pytorch模型 :param model_path: 模型地址(可以是模型的参数或者参数和计算图一起保存的文件) :param gpu_id: 在哪一块gpu上运行 ''' self.gpu_id = gpu_id if self.gpu_id is not None and isinstance(self.gpu_id, int) and torch.cuda.is_available(): self.device = torch.device("cuda:%s" % self.gpu_id) checkpoint = torch.load(model_path) else: self.device = torch.device("cpu") checkpoint = torch.load(model_path, map_location='cpu') print('device:', self.device) config = checkpoint['config'] config['arch']['args']['pretrained'] = False self.net = get_model(config) self.img_channel = config['data_loader']['args']['dataset']['img_channel'] self.net.load_state_dict(checkpoint['state_dict']) ## load weights self.net.to(self.device) self.net.eval()
Example #3
Source File: hseq_eval.py From pyslam with GNU General Public License v3.0 | 6 votes |
def prepare_reg_feat(hseq_utils, reg_model, overwrite): in_img_path = [] out_img_feat_list = [] for seq_name in hseq_utils.seqs: for img_idx in range(1, 7): img_feat_path = os.path.join(seq_name, '%d_img_feat.npy' % img_idx) if not os.path.exists(img_feat_path) or overwrite: in_img_path.append(os.path.join(seq_name, '%d.ppm' % img_idx)) out_img_feat_list.append(img_feat_path) if len(in_img_path) > 0: model = get_model('reg_model')(reg_model) prog_bar = progressbar.ProgressBar() prog_bar.max_value = len(in_img_path) for idx, val in enumerate(in_img_path): img = cv2.imread(val) img = img[..., ::-1] reg_feat = model.run_test_data(img) np.save(out_img_feat_list[idx], reg_feat) prog_bar.update(idx) model.close()
Example #4
Source File: evaluations.py From pyslam with GNU General Public License v3.0 | 6 votes |
def extract_reg_feat(config): """Extract regional features.""" prog_bar = progressbar.ProgressBar() config['stage'] = 'reg' dataset = get_dataset(config['data_name'])(**config) prog_bar.max_value = dataset.data_length test_set = dataset.get_test_set() model = get_model('reg_model')(config['pretrained']['reg_model'], **(config['reg_feat'])) idx = 0 while True: try: data = next(test_set) dump_path = data['dump_path'].decode('utf-8') reg_f = h5py.File(dump_path, 'a') if 'reg_feat' not in reg_f or config['reg_feat']['overwrite']: reg_feat = model.run_test_data(data['image']) if 'reg_feat' in reg_f: del reg_f['reg_feat'] _ = reg_f.create_dataset('reg_feat', data=reg_feat) prog_bar.update(idx) idx += 1 except dataset.end_set: break model.close()
Example #5
Source File: experiment_helper.py From RecurrentGaze with MIT License | 6 votes |
def __init__(self): """Initializes exp.""" super().__init__() self.name = "NFEL5836GRU" self.description = "Sequence of normalized face, eyes and landmarks. Frozen static model, fine-tune fusion " \ "layers and train RNN-GRU module from scratch" self.recurrent_type = "gru" self.num_recurrent_layers = 1 self.num_recurrent_units = 128 self.look_back = 4 self.weights = exp_utils.NFEL5836GRU_VGG16 self.min_lndmk = exp_utils.NFEL5836GRU_MIN_LNMDK self.max_lndmk = exp_utils.NFEL5836GRU_MAX_LNMDK self.label_pos = -1 self.model = get_model("two_stream_rnn") print(self.name) print(self.description) self.feature_arch = NFEL5836_2918() self.base_model = self.feature_arch.base_model
Example #6
Source File: swa.py From kaggle-hpa with BSD 2-Clause "Simplified" License | 6 votes |
def run(config, num_checkpoint, epoch_end, output_filename): dataloader = get_dataloader(config, 'train', get_transform(config, 'val')) model = get_model(config).cuda() checkpoints = get_checkpoints(config, num_checkpoint, epoch_end) utils.checkpoint.load_checkpoint(model, None, checkpoints[0]) for i, checkpoint in enumerate(checkpoints[1:]): model2 = get_model(config).cuda() last_epoch, _ = utils.checkpoint.load_checkpoint(model2, None, checkpoint) swa.moving_average(model, model2, 1. / (i + 2)) with torch.no_grad(): swa.bn_update(dataloader, model) output_name = '{}.{}.{:03d}'.format(output_filename, num_checkpoint, last_epoch) print('save {}'.format(output_name)) utils.checkpoint.save_checkpoint(config, model, None, 0, 0, name=output_name, weights_dict={'state_dict': model.state_dict()})
Example #7
Source File: train.py From kaggle-hpa with BSD 2-Clause "Simplified" License | 6 votes |
def run(config): train_dir = config.train.dir model = get_model(config).cuda() criterion = get_loss(config) optimizer = get_optimizer(config, model.parameters()) checkpoint = utils.checkpoint.get_initial_checkpoint(config) if checkpoint is not None: last_epoch, step = utils.checkpoint.load_checkpoint(model, optimizer, checkpoint) else: last_epoch, step = -1, -1 print('from checkpoint: {} last epoch:{}'.format(checkpoint, last_epoch)) scheduler = get_scheduler(config, optimizer, last_epoch) dataloaders = {split:get_dataloader(config, split, get_transform(config, split)) for split in ['train', 'val']} writer = SummaryWriter(config.train.dir) train(config, model, dataloaders, criterion, optimizer, scheduler, writer, last_epoch+1)
Example #8
Source File: test.py From DDPAE-video-prediction with MIT License | 6 votes |
def main(): opt, logger, vis = utils.build(is_train=False) dloader = data.get_data_loader(opt) print('Val dataset: {}'.format(len(dloader.dataset))) model = models.get_model(opt) for epoch in opt.which_epochs: # Load checkpoint if epoch == -1: # Find the latest checkpoint checkpoints = glob.glob(os.path.join(opt.ckpt_path, 'net*.pth')) assert len(checkpoints) > 0 epochs = [int(filename.split('_')[-1][:-4]) for filename in checkpoints] epoch = max(epochs) logger.print('Loading checkpoints from {}, epoch {}'.format(opt.ckpt_path, epoch)) model.load(opt.ckpt_path, epoch) results = evaluate(opt, dloader, model) for metric in results: logger.print('{}: {}'.format(metric, results[metric]))
Example #9
Source File: augmentation_search.py From kaggle-hpa with BSD 2-Clause "Simplified" License | 5 votes |
def search_once(config, policy): model = get_model(config).cuda() criterion = get_loss(config) optimizer = get_optimizer(config, model.parameters()) scheduler = get_scheduler(config, optimizer, -1) transforms = {'train': get_transform(config, 'train', params={'policies': policy}), 'val': get_transform(config, 'val')} dataloaders = {split:get_dataloader(config, split, transforms[split]) for split in ['train', 'val']} score_dict = train(config, model, dataloaders, criterion, optimizer, scheduler, None, 0) return score_dict['f1_mavg']
Example #10
Source File: inference.py From kaggle-hpa with BSD 2-Clause "Simplified" License | 5 votes |
def run(config, split, checkpoint_name, output_filename): model = get_model(config).cuda() checkpoint = utils.checkpoint.get_checkpoint(config, name=checkpoint_name) utils.checkpoint.load_checkpoint(model, None, checkpoint) inference(config, model, split, output_filename)
Example #11
Source File: image_matching.py From pyslam with GNU General Public License v3.0 | 5 votes |
def extract_augmented_features(reg_feat_list, loc_info_list, model_path): aug_feat_list = [] model = get_model('aug_model')(model_path, **{'quantz': False}) assert len(reg_feat_list) == len(loc_info_list) for idx, _ in enumerate(reg_feat_list): aug_feat, _ = model.run_test_data([reg_feat_list[idx], loc_info_list[idx]]) aug_feat_list.append(aug_feat) model.close() return aug_feat_list
Example #12
Source File: image_matching.py From pyslam with GNU General Public License v3.0 | 5 votes |
def extract_regional_features(rgb_list, model_path): reg_feat_list = [] model = get_model('reg_model')(model_path) for _, val in enumerate(rgb_list): reg_feat = model.run_test_data(val) reg_feat_list.append(reg_feat) model.close() return reg_feat_list
Example #13
Source File: evaluations.py From pyslam with GNU General Public License v3.0 | 5 votes |
def extract_aug_feat(config): """Extract augmented features.""" prog_bar = progressbar.ProgressBar() config['stage'] = 'aug' dataset = get_dataset(config['data_name'])(**config) prog_bar.max_value = dataset.data_length test_set = dataset.get_test_set() model = get_model('aug_model')(config['pretrained']['loc_model'], **(config['aug_feat'])) idx = 0 while True: try: data = next(test_set) dump_path = data['dump_path'].decode('utf-8') aug_f = h5py.File(dump_path, 'a') if 'aug_feat' not in aug_f or config['aug_feat']['overwrite']: aug_feat, _ = model.run_test_data(data['dump_data']) if 'aug_feat' in aug_f: del aug_f['aug_feat'] if aug_feat.dtype == np.uint8: _ = aug_f.create_dataset('aug_feat', data=aug_feat, dtype='uint8') else: _ = aug_f.create_dataset('aug_feat', data=aug_feat) prog_bar.update(idx) idx += 1 except dataset.end_set: break model.close()
Example #14
Source File: evaluations.py From pyslam with GNU General Public License v3.0 | 5 votes |
def extract_loc_feat(config): """Extract local features.""" prog_bar = progressbar.ProgressBar() config['stage'] = 'loc' dataset = get_dataset(config['data_name'])(**config) prog_bar.max_value = dataset.data_length test_set = dataset.get_test_set() model = get_model('loc_model')(config['pretrained']['loc_model'], **(config['loc_feat'])) idx = 0 while True: try: data = next(test_set) dump_path = data['dump_path'].decode('utf-8') loc_f = h5py.File(dump_path, 'a') if 'loc_info' not in loc_f and 'kpt' not in loc_f or config['loc_feat']['overwrite']: # detect SIFT keypoints and crop image patches. loc_feat, kpt_mb, npy_kpts, cv_kpts, _ = model.run_test_data(data['image']) loc_info = np.concatenate((npy_kpts, loc_feat, kpt_mb), axis=-1) raw_kpts = [np.array((i.pt[0], i.pt[1], i.size, i.angle, i.response)) for i in cv_kpts] raw_kpts = np.stack(raw_kpts, axis=0) loc_info = np.concatenate((raw_kpts, loc_info), axis=-1) if 'loc_info' in loc_f or 'kpt' in loc_f: del loc_f['loc_info'] _ = loc_f.create_dataset('loc_info', data=loc_info) prog_bar.update(idx) idx += 1 except dataset.end_set: break model.close()
Example #15
Source File: tuning.py From SGC with MIT License | 5 votes |
def linear_objective(space): model = get_model(args.model, nfeat=feat_dict["train"].size(1), nclass=nclass, nhid=0, dropout=0, cuda=args.cuda) val_acc, _, _ = train_linear(model, feat_dict, space['weight_decay'], args.dataset=="mr") print( 'weight decay ' + str(space['weight_decay']) + '\n' + \ 'overall accuracy: ' + str(val_acc)) return {'loss': -val_acc, 'status': STATUS_OK} # Hyperparameter optimization
Example #16
Source File: tuning.py From SGC with MIT License | 5 votes |
def sgc_objective(space): model = get_model(args.model, features.size(1), labels.max().item()+1, args.hidden, args.dropout, args.cuda) model, acc_val, _ = train_regression(model, features[idx_train], labels[idx_train], features[idx_val], labels[idx_val], args.epochs, space['weight_decay'], args.lr, args.dropout) print('weight decay: {:.2e} '.format(space['weight_decay']) + 'accuracy: {:.4f}'.format(acc_val)) return {'loss': -acc_val, 'status': STATUS_OK}
Example #17
Source File: train.py From Real-time-Text-Detection with Apache License 2.0 | 5 votes |
def main(config): train_loader = get_dataloader(config['data_loader']['type'], config['data_loader']['args']) criterion = get_loss(config).cuda() model = get_model(config) trainer = Trainer(config=config, model=model, criterion=criterion, train_loader=train_loader) trainer.train()
Example #18
Source File: embed.py From triplet-reid-pytorch with MIT License | 5 votes |
def restore_model(args, model_path): basepath = get_basepath_from_modelpath(model_path) model, endpoints = import_from_path(basepath, args) if model is None: model, endpoints = get_model(args) #restore trained model state_dict = torch.load(model_path) state_dict = clean_dict(state_dict) model.load_state_dict(state_dict) return model, endpoints
Example #19
Source File: predict.py From crnn.gluon with Apache License 2.0 | 5 votes |
def __init__(self, model_path, gpu_id=None): """ 初始化gluon模型 :param model_path: 模型地址 :param gpu_id: 在哪一块gpu上运行 """ info = pickle.load(open(model_path.replace('.params', '.info'), 'rb')) print('load {} epoch params'.format(info['epoch'])) config = info['config'] alphabet = config['dataset']['alphabet'] self.ctx = try_gpu(gpu_id) self.transform = [] for t in config['dataset']['train']['dataset']['args']['transforms']: if t['type'] in ['ToTensor', 'Normalize']: self.transform.append(t) self.transform = get_transforms(self.transform) self.gpu_id = gpu_id img_h, img_w = 32, 100 for process in config['dataset']['train']['dataset']['args']['pre_processes']: if process['type'] == "Resize": img_h = process['args']['img_h'] img_w = process['args']['img_w'] break self.img_w = img_w self.img_h = img_h self.img_mode = config['dataset']['train']['dataset']['args']['img_mode'] self.alphabet = alphabet self.net = get_model(len(alphabet), self.ctx, config['arch']['args']) self.net.load_parameters(model_path, self.ctx) # self.net = gluon.SymbolBlock.imports('crnn_lite-symbol.json', ['data'], 'crnn_lite-0000.params', ctx=self.ctx) self.net.hybridize()
Example #20
Source File: landmark_detector.py From kaggle-humpback with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, config): self.anchors = [np.array(LandmarkDetector.RATIO) * s for s in LandmarkDetector.SCALE] self.anchors = np.concatenate(self.anchors, axis=0) assert self.anchors.shape == (len(LandmarkDetector.SCALE) * len(LandmarkDetector.RATIO), 2) self.feature_size = config.model.params.feature_size self.num_anchors = len(LandmarkDetector.SCALE) * len(LandmarkDetector.RATIO) num_outputs = LandmarkDetector.NUM_OUTPUTS self.model = get_model(config, num_outputs=num_outputs) self.model.avgpool = nn.AdaptiveAvgPool2d(self.feature_size) in_features = self.model.last_linear.in_features self.model.last_linear = nn.Conv2d(in_channels=in_features, out_channels=len(self.anchors)*num_outputs, kernel_size=1) def logits(self, features): x = self.avgpool(features) x = self.last_linear(x) return x self.model.logits = types.MethodType(logits, self.model) if torch.cuda.device_count() > 1: self.model = torch.nn.DataParallel(self.model) self.model = self.model.cuda() self.preprocess_opt = {'mean': self.model.mean, 'std': self.model.std, 'input_range': self.model.input_range, 'input_space': self.model.input_space} self.criterion = get_loss(config) self.cls_criterion = F.binary_cross_entropy_with_logits
Example #21
Source File: landmark_detector.py From kaggle-humpback with BSD 2-Clause "Simplified" License | 5 votes |
def get_model(self): return self.model
Example #22
Source File: identifier.py From kaggle-humpback with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, config): super().__init__() num_outputs = config.model.params.num_outputs feature_size = config.model.params.feature_size if 'channel_size' in config.model.params: channel_size = config.model.params.channel_size else: channel_size = 512 self.model = get_model(config) if isinstance(self.model.last_linear, nn.Conv2d): in_features = self.model.last_linear.in_channels else: in_features = self.model.last_linear.in_features self.bn1 = nn.BatchNorm2d(in_features) self.dropout = nn.Dropout2d(config.model.params.drop_rate, inplace=True) self.fc1 = nn.Linear(in_features * feature_size * feature_size, channel_size) self.bn2 = nn.BatchNorm1d(channel_size) s = config.model.params.s if 's' in config.model.params else 65 m = config.model.params.m if 'm' in config.model.params else 0.5 self.arc = ArcModule(channel_size, num_outputs, s=s, m=m) if config.model.params.pretrained: self.mean = self.model.mean self.std = self.model.std self.input_range = self.model.input_range self.input_space = self.model.input_space else: self.mean = [0.5, 0.5, 0.5] self.std = [0.5, 0.5, 0.5] self.input_range = [0, 1] self.input_space = 'RGB'
Example #23
Source File: identifier.py From kaggle-humpback with BSD 2-Clause "Simplified" License | 5 votes |
def get_model(self): return self.model
Example #24
Source File: experiment_helper.py From RecurrentGaze with MIT License | 5 votes |
def __init__(self): """ Initialize exp. """ super().__init__() self.name = "OF4096" self.description = "Original face, fc 4096D, finetuned VGGFace except last fc" self.weights = exp_utils.OF4096_VGG16 self.base_model = BaseModel.get_base_model("VGGFace") self.model = get_model("face_finetune") print(self.name) print(self.description)
Example #25
Source File: experiment_helper.py From RecurrentGaze with MIT License | 5 votes |
def __init__(self): """ Initializes exp. """ super().__init__() self.name = "NF4096" self.description = "Normalized face, fc 4096D, fcs trained from scratch" self.weights = exp_utils.NF4096_VGG16 self.base_model = BaseModel.get_base_model("VGGFace") self.model = get_model("face_fcscratch") print(self.name) print(self.description)
Example #26
Source File: experiment_helper.py From RecurrentGaze with MIT License | 5 votes |
def __init__(self): """ Initializes exp. """ super().__init__() self.name = "NF5632" self.description = "Normalized face, fc 5632D, fcs trained from scratch" self.fc_dimensions = 5632 self.weights = exp_utils.NF5632_VGG16 self.base_model = BaseModel.get_base_model("VGGFace") self.model = get_model("face_fcscratch") print(self.name) print(self.description)
Example #27
Source File: experiment_helper.py From RecurrentGaze with MIT License | 5 votes |
def __init__(self): """ Initializes exp. """ super().__init__() self.name = "NE1536" self.description = "Normalized eyes, fc 1536D, fcs trained from scratch" self.weights = exp_utils.NE1536_VGG16 self.base_model = BaseModel.get_base_model("VGGFace") self.model = get_model("eyes_fcscratch") print(self.name) print(self.description)
Example #28
Source File: experiment_helper.py From RecurrentGaze with MIT License | 5 votes |
def __init__(self): """Initializes experiment""" super().__init__() self.name = "NFL4300" self.description = "Normalized face and landmarks, fc 4300D" self.fc_dimensions = 4300 self.weights = exp_utils.NFL4300_VGG16 self.min_lndmk = exp_utils.NFL4300_MIN_LNMDK self.max_lndmk = exp_utils.NFL4300_MAX_LNMDK self.base_model = BaseModel.get_base_model("VGGFace") self.model = get_model("face_fcscratch") print(self.name) print(self.description)
Example #29
Source File: experiment_helper.py From RecurrentGaze with MIT License | 5 votes |
def __init__(self): """Initializes exp.""" super().__init__() self.name = "NFEL5836" self.description = "Normalized face, eyes and landmarks, two-stream + metadata network, fc 5836D" self.fc_dimensions = 2918 self.weights = exp_utils.NFEL5836_VGG16 self.min_lndmk = exp_utils.NFEL5836_MIN_LNMDK self.max_lndmk = exp_utils.NFEL5836_MAX_LNMDK self.base_model = BaseModel.get_base_model("VGGFace") self.model = get_model("two_stream") print(self.name) print(self.description)
Example #30
Source File: test.py From next-prediction with Apache License 2.0 | 5 votes |
def main(args): """Run testing.""" test_data = utils.read_data(args, "test") print("total test samples:%s" % test_data.num_examples) if args.random_other: print("warning, testing mode with 'random_other' will result in " "different results every run...") model = models.get_model(args, gpuid=args.gpuid) tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True tfconfig.gpu_options.visible_device_list = "%s" % ( ",".join(["%s" % i for i in [args.gpuid]])) with tf.Session(config=tfconfig) as sess: utils.initialize(load=True, load_best=args.load_best, args=args, sess=sess) # load the graph and variables tester = models.Tester(model, args, sess) perf = utils.evaluate(test_data, args, sess, tester) print("performance:") numbers = [] for k in sorted(perf.keys()): print("%s, %s" % (k, perf[k])) numbers.append("%s" % perf[k]) print(" ".join(sorted(perf.keys()))) print(" ".join(numbers))