Python models.EncoderRNN() Examples
The following are 5
code examples of models.EncoderRNN().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
models
, or try the search function
.
Example #1
Source File: eval.py From video-caption.pytorch with MIT License | 6 votes |
def main(opt): dataset = VideoDataset(opt, "test") opt["vocab_size"] = dataset.get_vocab_size() opt["seq_length"] = dataset.max_len if opt["model"] == 'S2VTModel': model = S2VTModel(opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], rnn_dropout_p=opt["rnn_dropout_p"]).cuda() elif opt["model"] == "S2VTAttModel": encoder = EncoderRNN(opt["dim_vid"], opt["dim_hidden"], bidirectional=opt["bidirectional"], input_dropout_p=opt["input_dropout_p"], rnn_dropout_p=opt["rnn_dropout_p"]) decoder = DecoderRNN(opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], input_dropout_p=opt["input_dropout_p"], rnn_dropout_p=opt["rnn_dropout_p"], bidirectional=opt["bidirectional"]) model = S2VTAttModel(encoder, decoder).cuda() #model = nn.DataParallel(model) # Setup the model model.load_state_dict(torch.load(opt["saved_model"])) crit = utils.LanguageModelCriterion() test(model, crit, dataset, dataset.get_vocab(), opt)
Example #2
Source File: eval.py From video-caption.pytorch with MIT License | 5 votes |
def main(opt): dataset = VideoDataset(opt, "test") opt["vocab_size"] = dataset.get_vocab_size() opt["seq_length"] = dataset.max_len if opt['beam_size'] != 1: assert opt["batch_size"] == 1 if opt["model"] == 'S2VTModel': model = S2VTModel(opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], opt['dim_vid'], n_layers=opt['num_layers'], rnn_cell=opt['rnn_type'], bidirectional=opt["bidirectional"], rnn_dropout_p=opt["rnn_dropout_p"]).cuda() elif opt["model"] == "S2VTAttModel": encoder = EncoderRNN(opt["dim_vid"], opt["dim_hidden"], n_layers=opt['num_layers'], rnn_cell=opt['rnn_type'], bidirectional=opt["bidirectional"], input_dropout_p=opt["input_dropout_p"], rnn_dropout_p=opt["rnn_dropout_p"]) decoder = DecoderRNN(opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], n_layers=opt['num_layers'], rnn_cell=opt['rnn_type'], input_dropout_p=opt["input_dropout_p"], rnn_dropout_p=opt["rnn_dropout_p"], bidirectional=opt["bidirectional"]) model = S2VTAttModel(encoder, decoder).cuda() model = nn.DataParallel(model) # Setup the model model.load_state_dict(torch.load(opt["saved_model"])) crit = utils.LanguageModelCriterion() test(model, crit, dataset, dataset.get_vocab(), opt)
Example #3
Source File: train.py From video-caption.pytorch with MIT License | 4 votes |
def main(opt): dataset = VideoDataset(opt, 'train') dataloader = DataLoader(dataset, batch_size=opt["batch_size"], shuffle=True) opt["vocab_size"] = dataset.get_vocab_size() if opt["model"] == 'S2VTModel': model = S2VTModel( opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], opt['dim_vid'], rnn_cell=opt['rnn_type'], n_layers=opt['num_layers'], bidirectional=opt["bidirectional"], rnn_dropout_p=opt["rnn_dropout_p"]).cuda() elif opt["model"] == "S2VTAttModel": encoder = EncoderRNN( opt["dim_vid"], opt["dim_hidden"], n_layers=opt['num_layers'], bidirectional=opt["bidirectional"], input_dropout_p=opt["input_dropout_p"], rnn_cell=opt['rnn_type'], rnn_dropout_p=opt["rnn_dropout_p"]) decoder = DecoderRNN( opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], n_layers=opt['num_layers'], input_dropout_p=opt["input_dropout_p"], rnn_cell=opt['rnn_type'], rnn_dropout_p=opt["rnn_dropout_p"], bidirectional=opt["bidirectional"]) model = S2VTAttModel(encoder, decoder).cuda() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = optim.Adam( model.parameters(), lr=opt["learning_rate"], weight_decay=opt["weight_decay"]) exp_lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=opt["learning_rate_decay_every"], gamma=opt["learning_rate_decay_rate"]) train(dataloader, model, crit, optimizer, exp_lr_scheduler, opt, rl_crit)
Example #4
Source File: train.py From video-caption.pytorch with MIT License | 4 votes |
def main(opt): dataset = VideoDataset(opt, 'train') dataloader = DataLoader(dataset, batch_size=opt["batch_size"], shuffle=True) opt["vocab_size"] = dataset.get_vocab_size() if opt["model"] == 'S2VTModel': model = S2VTModel( opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], opt['dim_vid'], rnn_cell=opt['rnn_type'], n_layers=opt['num_layers'], rnn_dropout_p=opt["rnn_dropout_p"]) elif opt["model"] == "S2VTAttModel": encoder = EncoderRNN( opt["dim_vid"], opt["dim_hidden"], bidirectional=opt["bidirectional"], input_dropout_p=opt["input_dropout_p"], rnn_cell=opt['rnn_type'], rnn_dropout_p=opt["rnn_dropout_p"]) decoder = DecoderRNN( opt["vocab_size"], opt["max_len"], opt["dim_hidden"], opt["dim_word"], input_dropout_p=opt["input_dropout_p"], rnn_cell=opt['rnn_type'], rnn_dropout_p=opt["rnn_dropout_p"], bidirectional=opt["bidirectional"]) model = S2VTAttModel(encoder, decoder) model = model.cuda() crit = utils.LanguageModelCriterion() rl_crit = utils.RewardCriterion() optimizer = optim.Adam( model.parameters(), lr=opt["learning_rate"], weight_decay=opt["weight_decay"]) exp_lr_scheduler = optim.lr_scheduler.StepLR( optimizer, step_size=opt["learning_rate_decay_every"], gamma=opt["learning_rate_decay_rate"]) train(dataloader, model, crit, optimizer, exp_lr_scheduler, opt, rl_crit)
Example #5
Source File: train.py From Sentiment-Analysis with Apache License 2.0 | 4 votes |
def main(): voc = Lang('data/WORDMAP.json') print("voc.n_words: " + str(voc.n_words)) train_data = SaDataset('train', voc) val_data = SaDataset('valid', voc) # Initialize encoder encoder = EncoderRNN(voc.n_words, hidden_size, encoder_n_layers, dropout) # Use appropriate device encoder = encoder.to(device) # Initialize optimizers print('Building optimizers ...') optimizer = optim.Adam(encoder.parameters(), lr=learning_rate) best_acc = 0 epochs_since_improvement = 0 # Epochs for epoch in range(start_epoch, epochs): # Decay learning rate if there is no improvement for 8 consecutive epochs, and terminate training after 20 if epochs_since_improvement == 20: break if epochs_since_improvement > 0 and epochs_since_improvement % 8 == 0: adjust_learning_rate(optimizer, 0.8) # One epoch's training train(epoch, train_data, encoder, optimizer) # One epoch's validation val_acc, val_loss = valid(val_data, encoder) print('\n * ACCURACY - {acc:.3f}, LOSS - {loss:.3f}\n'.format(acc=val_acc, loss=val_loss)) # Check if there was an improvement is_best = val_acc > best_acc best_acc = max(best_acc, val_acc) if not is_best: epochs_since_improvement += 1 print("\nEpochs since last improvement: %d\n" % (epochs_since_improvement,)) else: epochs_since_improvement = 0 # Save checkpoint save_checkpoint(epoch, encoder, optimizer, val_acc, is_best) # Reshuffle samples np.random.shuffle(train_data.samples) np.random.shuffle(val_data.samples)