Python models.setup() Examples
The following are 3
code examples of models.setup().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
models
, or try the search function
.
Example #1
Source File: train_AREL.py From AREL with MIT License | 5 votes |
def test(opt): logger = Logger(opt) dataset = VISTDataset(opt) opt.vocab_size = dataset.get_vocab_size() opt.seq_length = dataset.get_story_length() dataset.test() test_loader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers) evaluator = Evaluator(opt, 'test') model = models.setup(opt) model.cuda() predictions, metrics = evaluator.test_story(model, dataset, test_loader, opt)
Example #2
Source File: train.py From AREL with MIT License | 5 votes |
def test(opt): logger = Logger(opt) dataset = VISTDataset(opt) opt.vocab_size = dataset.get_vocab_size() opt.seq_length = dataset.get_story_length() dataset.test() test_loader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.workers) evaluator = Evaluator(opt, 'test') model = models.setup(opt) model.cuda() predictions, metrics = evaluator.test_story(model, dataset, test_loader, opt)
Example #3
Source File: main.py From TextClassificationBenchmark with MIT License | 4 votes |
def train(opt,train_iter, test_iter,verbose=True): global_start= time.time() logger = utils.getLogger() model=models.setup(opt) if torch.cuda.is_available(): model.cuda() params = [param for param in model.parameters() if param.requires_grad] #filter(lambda p: p.requires_grad, model.parameters()) model_info =";".join( [str(k)+":"+ str(v) for k,v in opt.__dict__.items() if type(v) in (str,int,float,list,bool)]) logger.info("# parameters:" + str(sum(param.numel() for param in params))) logger.info(model_info) model.train() optimizer = utils.getOptimizer(params,name=opt.optimizer, lr=opt.learning_rate,scheduler= utils.get_lr_scheduler(opt.lr_scheduler)) loss_fun = F.cross_entropy filename = None percisions=[] for i in range(opt.max_epoch): for epoch,batch in enumerate(train_iter): optimizer.zero_grad() start= time.time() text = batch.text[0] if opt.from_torchtext else batch.text predicted = model(text) loss= loss_fun(predicted,batch.label) loss.backward() utils.clip_gradient(optimizer, opt.grad_clip) optimizer.step() if verbose: if torch.cuda.is_available(): logger.info("%d iteration %d epoch with loss : %.5f in %.4f seconds" % (i,epoch,loss.cpu().data.numpy(),time.time()-start)) else: logger.info("%d iteration %d epoch with loss : %.5f in %.4f seconds" % (i,epoch,loss.data.numpy()[0],time.time()-start)) percision=utils.evaluation(model,test_iter,opt.from_torchtext) if verbose: logger.info("%d iteration with percision %.4f" % (i,percision)) if len(percisions)==0 or percision > max(percisions): if filename: os.remove(filename) filename = model.save(metric=percision) percisions.append(percision) # while(utils.is_writeable(performance_log_file)): df = pd.read_csv(performance_log_file,index_col=0,sep="\t") df.loc[model_info,opt.dataset] = max(percisions) df.to_csv(performance_log_file,sep="\t") logger.info(model_info +" with time :"+ str( time.time()-global_start)+" ->" +str( max(percisions) ) ) print(model_info +" with time :"+ str( time.time()-global_start)+" ->" +str( max(percisions) ) )