Python tensorflow.contrib.layers.layer_norm() Examples
The following are 30
code examples of tensorflow.contrib.layers.layer_norm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.layers
, or try the search function
.
Example #1
Source File: models.py From ICML2019-TREX with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #2
Source File: models.py From sonic_contest with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #3
Source File: models.py From learning2run with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #4
Source File: decoder_conv.py From conv-ensemble-str with Apache License 2.0 | 6 votes |
def create_logit(self, next_layer, att_scores, output_collection, scope): # output with tf.variable_scope(scope): if not self.is_training: # only keep the last time step # [N/B, M, C] --> [N/B, 1, C] next_layer = next_layer[:, -1:, :] # [N/B, L, M, H, W] --> [N/B, L, H, W] att_scores = att_scores[:, :, -1, :, :] next_layer = self.linear_mapping_weightnorm( next_layer, out_dim=self.params["nout_embed"], output_collection=output_collection) next_layer = layer_norm(next_layer, begin_norm_axis=2) next_layer = self.linear_mapping_weightnorm( next_layer, out_dim=self.num_charset, var_scope_name="liear_logits", output_collection=output_collection) return next_layer, att_scores
Example #5
Source File: models.py From ape-x with Apache License 2.0 | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #6
Source File: models.py From rl-attack with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #7
Source File: models.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #8
Source File: models.py From DRL_DeliveryDuel with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #9
Source File: models.py From HardRLWithYoutube with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #10
Source File: models.py From ICML2019-TREX with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #11
Source File: models.py From self-imitation-learning with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #12
Source File: common_layers.py From language with Apache License 2.0 | 6 votes |
def stacked_highway(input_emb, hidden_sizes, dropout_ratio, mode, layer_norm=True): """Construct multiple `highway` layers stacked on top of one another. Args: input_emb: tensor<float> [..., embedding_size] hidden_sizes: list<int> [hidden_size_1, hidden_size_2, ...] dropout_ratio: The probability of dropping out each unit in the activation. This can be None, and is only applied during training. mode: One of the keys from tf.estimator.ModeKeys. layer_norm: Boolean indicating whether we should apply layer normalization. Returns: output_emb: A Tensor with the same shape as `input_emb`, except for the last dimension which will have size `hidden_sizes[-1]` instead. """ for i, h in enumerate(hidden_sizes): with tf.variable_scope("highway_{}".format(i)): input_emb = highway(input_emb, h, dropout_ratio, mode, layer_norm) return input_emb
Example #13
Source File: models.py From lirpg with MIT License | 6 votes |
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- convs: [(int, int int)] list of convolutional layers in form of (num_outputs, kernel_size, stride) hiddens: [int] list of sizes of hidden layers dueling: bool if true double the output MLP to compute a baseline for action scores Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #14
Source File: modules.py From squad-transformer with Apache License 2.0 | 5 votes |
def _build_conv_sublayer(self, inputs, sublayer_id, scope=None, reuse=None): """Compute layer_norm(x + conv(x)), where conv is depthwise-separable convolution Inputs: inputs: tensor. The input sequence to this sublayer. Shape (batch_size, seq_len, num_filters). sublayer_id: int. ID for this sublayer, used for stochastic depth dropout. Bounds: [1, self.num_sublayers]. Returns: Tensor shape (batch_size, seq_len, num_filters). Result of applying the sublayer operations. """ scope = scope or "ConvSublayer{}".format(sublayer_id) with tf.variable_scope(scope, reuse=reuse): outputs = self._sublayer_pre_process(inputs, reuse=reuse) outputs = self._ds_conv(outputs, self.d_model, self.kernel_size, self.l2_lambda, reuse=reuse) return self._sublayer_post_process(inputs, outputs, sublayer_id)
Example #15
Source File: modules.py From squad-transformer with Apache License 2.0 | 5 votes |
def _sublayer_pre_process(layer_inputs, reuse=None): """Perform sublayer pre-processing steps. We only apply layer_norm. A note from Google's tensor2tensor repo: "The current settings ("", "dan") are the published version of the transformer. ("n", "da") seems better for harder-to-learn models, so it should probably be the default." """ return tf_layers.layer_norm(layer_inputs, scope="LayerNorm", reuse=reuse)
Example #16
Source File: models.py From self-imitation-learning with MIT License | 5 votes |
def mlp(hiddens=[], layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
Example #17
Source File: models.py From self-imitation-learning with MIT License | 5 votes |
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): out = inpt for hidden in hiddens: out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None) if layer_norm: out = layers.layer_norm(out, center=True, scale=True) out = tf.nn.relu(out) q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return q_out
Example #18
Source File: vrgripper_env_models.py From tensor2robot with Apache License 2.0 | 5 votes |
def model_train_fn(self, features, labels, inference_outputs, mode, config = None, params = None ): """Output learned loss if inner loop, or behavior clone if outer loop.""" if params and params.get('is_outer_loss', False): # Outer loss case: use standard RegressionModel loss. return self.loss_fn(labels, inference_outputs, mode, params) # Inner loss case: compute learned loss function. with tf.variable_scope( 'learned_loss', reuse=tf.AUTO_REUSE, use_resource=True): predicted_action, _ = meta_tfdata.multi_batch_apply( vision_layers.BuildImageFeaturesToPoseModel, 2, inference_outputs['feature_points'], num_outputs=self._action_size) if self._learned_loss_conv1d_layers is None: return tf.losses.mean_squared_error(predicted_action, inference_outputs['action']) ll_input = tf.concat([ predicted_action, inference_outputs['feature_points'], inference_outputs['inference_output'] ], -1) net = ll_input for num_filters in self._learned_loss_conv1d_layers[:-1]: net = tf.layers.conv1d( net, num_filters, 10, activation=tf.nn.relu, use_bias=False) net = contrib_layers.layer_norm(net) net = tf.layers.conv1d(net, self._learned_loss_conv1d_layers[-1], 1) # 1x1 convolution. return tf.reduce_mean(tf.reduce_sum(tf.square(net), axis=(1, 2)))
Example #19
Source File: models.py From self-imitation-learning with MIT License | 5 votes |
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): out = inpt with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu) conv_out = layers.flatten(out) with tf.variable_scope("action_value"): action_out = conv_out for hidden in hiddens: action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None) if layer_norm: action_out = layers.layer_norm(action_out, center=True, scale=True) action_out = tf.nn.relu(action_out) action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None) if dueling: with tf.variable_scope("state_value"): state_out = conv_out for hidden in hiddens: state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None) if layer_norm: state_out = layers.layer_norm(state_out, center=True, scale=True) state_out = tf.nn.relu(state_out) state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) q_out = state_score + action_scores_centered else: q_out = action_scores return q_out
Example #20
Source File: models_collection.py From SketchySceneColorization with MIT License | 5 votes |
def image_encoder_residual(x, num_residual_units, num_classes, reuse=False, data_format='NCHW', labels=None, scope_name=None): """ :param x: [batch_size, 3, H, W] :return: """ assert data_format == 'NCHW' size = SIZE if normalizer_params_e is not None and normalizer_fn_e != ly.batch_norm and normalizer_fn_e != ly.layer_norm: normalizer_params_e['labels'] = labels normalizer_params_e['n_labels'] = num_classes output_list = [] # encoder_1: [batch, 3, 192, 192] => [batch, 64, 96, 96] with tf.variable_scope("encoder_1"): output = nchw_conv_ex(x, size, stride=2, filter_size=7) output = batchnorm(output, data_format=data_format) output = lrelu(output, 0.2) output_list.append(output) layer_specs = [ size * 2, # encoder_2: [batch, 64, 96, 96] => [batch, 128, 48, 48] size * 4, # encoder_3: [batch, 128, 48, 48] => [batch, 256, 24, 24] size * 8, # encoder_4: [batch, 256, 24, 24] => [batch, 512, 12, 12] size * 8, # encoder_5: [batch, 512, 12, 12] => [batch, 512, 6, 6] ] for encoder_layer, (out_channels) in enumerate(layer_specs): with tf.variable_scope("encoder_%d_0" % (len(output_list) + 1)): output = bottleneck_residual_en(output_list[-1], out_channels, stride=2) for uId in range(1, num_residual_units[encoder_layer]): with tf.variable_scope("encoder_%d_%d" % (len(output_list) + 1, uId)): output = bottleneck_residual_pu(output, out_channels, True) output_list.append(output) return output_list
Example #21
Source File: models.py From lirpg with MIT License | 5 votes |
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): out = inpt for hidden in hiddens: out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None) if layer_norm: out = layers.layer_norm(out, center=True, scale=True) out = tf.nn.relu(out) q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return q_out
Example #22
Source File: models.py From sonic_contest with MIT License | 5 votes |
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): out = inpt with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu) conv_out = layers.flatten(out) with tf.variable_scope("action_value"): action_out = conv_out for hidden in hiddens: action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None) if layer_norm: action_out = layers.layer_norm(action_out, center=True, scale=True) action_out = tf.nn.relu(action_out) action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None) if dueling: with tf.variable_scope("state_value"): state_out = conv_out for hidden in hiddens: state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None) if layer_norm: state_out = layers.layer_norm(state_out, center=True, scale=True) state_out = tf.nn.relu(state_out) state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) q_out = state_score + action_scores_centered else: q_out = action_scores return q_out
Example #23
Source File: models.py From sonic_contest with MIT License | 5 votes |
def mlp(hiddens=[], layer_norm=False): """This model takes as input an observation and returns values of all actions. Parameters ---------- hiddens: [int] list of sizes of hidden layers Returns ------- q_func: function q_function for DQN algorithm. """ return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs)
Example #24
Source File: models.py From sonic_contest with MIT License | 5 votes |
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): out = inpt for hidden in hiddens: out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None) if layer_norm: out = layers.layer_norm(out, center=True, scale=True) out = tf.nn.relu(out) q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return q_out
Example #25
Source File: models.py From qmap with MIT License | 5 votes |
def ConvMlp(convs, hiddens, dueling=False, layer_norm=False): return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs)
Example #26
Source File: models.py From ICML2019-TREX with MIT License | 5 votes |
def _cnn_to_mlp(convs, hiddens, dueling, input_, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): out = input_ with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu) conv_out = layers.flatten(out) with tf.variable_scope("action_value"): action_out = conv_out for hidden in hiddens: action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None) if layer_norm: action_out = layers.layer_norm(action_out, center=True, scale=True) action_out = tf.nn.relu(action_out) action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None) if dueling: with tf.variable_scope("state_value"): state_out = conv_out for hidden in hiddens: state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None) if layer_norm: state_out = layers.layer_norm(state_out, center=True, scale=True) state_out = tf.nn.relu(state_out) state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) q_out = state_score + action_scores_centered else: q_out = action_scores return q_out
Example #27
Source File: models.py From qmap with MIT License | 5 votes |
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False): with tf.variable_scope(scope, reuse=reuse): inpt = tf.cast(inpt, tf.float32) inpt = tf.div(inpt, 255.) out = inpt with tf.variable_scope("convnet"): for num_outputs, kernel_size, stride in convs: out = layers.convolution2d(out, num_outputs=num_outputs, kernel_size=kernel_size, stride=stride, activation_fn=tf.nn.relu) conv_out = layers.flatten(out) with tf.variable_scope("action_value"): action_out = conv_out for hidden in hiddens: action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None) if layer_norm: action_out = layers.layer_norm(action_out, center=True, scale=True) action_out = tf.nn.relu(action_out) action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None) if dueling: with tf.variable_scope("state_value"): state_out = conv_out for hidden in hiddens: state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None) if layer_norm: state_out = layers.layer_norm(state_out, center=True, scale=True) state_out = tf.nn.relu(state_out) state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) q_out = state_score + action_scores_centered else: q_out = action_scores return q_out
Example #28
Source File: modeling.py From albert with Apache License 2.0 | 5 votes |
def layer_norm_and_dropout(input_tensor, dropout_prob, name=None): """Runs layer normalization followed by dropout.""" output_tensor = layer_norm(input_tensor, name) output_tensor = dropout(output_tensor, dropout_prob) return output_tensor
Example #29
Source File: modeling.py From albert with Apache License 2.0 | 5 votes |
def layer_norm(input_tensor, name=None): """Run layer normalization on the last dimension of the tensor.""" return contrib_layers.layer_norm( inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name)
Example #30
Source File: models.py From ICML2019-TREX with MIT License | 5 votes |
def build_q_func(network, hiddens=[256], dueling=True, layer_norm=False, **network_kwargs): if isinstance(network, str): from baselines.common.models import get_network_builder network = get_network_builder(network)(**network_kwargs) def q_func_builder(input_placeholder, num_actions, scope, reuse=False): with tf.variable_scope(scope, reuse=reuse): latent = network(input_placeholder) if isinstance(latent, tuple): if latent[1] is not None: raise NotImplementedError("DQN is not compatible with recurrent policies yet") latent = latent[0] latent = layers.flatten(latent) with tf.variable_scope("action_value"): action_out = latent for hidden in hiddens: action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None) if layer_norm: action_out = layers.layer_norm(action_out, center=True, scale=True) action_out = tf.nn.relu(action_out) action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None) if dueling: with tf.variable_scope("state_value"): state_out = latent for hidden in hiddens: state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None) if layer_norm: state_out = layers.layer_norm(state_out, center=True, scale=True) state_out = tf.nn.relu(state_out) state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None) action_scores_mean = tf.reduce_mean(action_scores, 1) action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1) q_out = state_score + action_scores_centered else: q_out = action_scores return q_out return q_func_builder