Python onnx.helper.make_tensor_value_info() Examples
The following are 30
code examples of onnx.helper.make_tensor_value_info().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
onnx.helper
, or try the search function
.
Example #1
Source File: links.py From chainer-compiler with MIT License | 7 votes |
def __init__(self, ch): super(Link_Convolution2D, self).__init__(L.Convolution2D(None, None)) # code.InteractiveConsole({'ch': ch}).interact() self.ksize = size2d(ch.ksize) self.stride = size2d(ch.stride) ps = size2d(ch.pad) self.pads = ps + ps if not (ch.b is None): # nobias = True の場合 self.M = ch.b.shape[0] self.b = helper.make_tensor_value_info( '/b', TensorProto.FLOAT, [self.M]) else: self.M = "TODO" self.b = None self.W = helper.make_tensor_value_info( '/W', TensorProto.FLOAT, [self.M, 'channel_size'] + list(self.ksize))
Example #2
Source File: onnx_import_test.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def test_broadcast(): """Test for broadcasting in onnx operators.""" input1 = np.random.rand(1, 3, 4, 5).astype("float32") input2 = np.random.rand(1, 5).astype("float32") inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)), helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))] outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))] nodes = [helper.make_node("Add", ["input1", "input2"], ["output"])] graph = helper.make_graph(nodes, "bcast_test", inputs, outputs) bcast_model = helper.make_model(graph) bkd_rep = mxnet_backend.prepare(bcast_model) numpy_op = input1 + input2 output = bkd_rep.run([input1, input2]) npt.assert_almost_equal(output[0], numpy_op)
Example #3
Source File: test_ops_matmul.py From ngraph-onnx with Apache License 2.0 | 7 votes |
def make_onnx_model_for_matmul_op(input_left, input_right): output_shape = np.matmul(input_left, input_right).shape node = make_node('MatMul', ['X', 'Y'], ['Z'], name='test_node') graph = make_graph([node], 'test_graph', [make_tensor_value_info('X', onnx.TensorProto.FLOAT, input_left.shape), make_tensor_value_info('Y', onnx.TensorProto.FLOAT, input_right.shape)], [make_tensor_value_info('Z', onnx.TensorProto.FLOAT, output_shape)]) model = make_model(graph, producer_name='ngraph ONNXImporter') return model
Example #4
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 7 votes |
def test_is_inf(self): if legacy_opset_pre_ver(10): raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format( defs.onnx_opset_version())) inp = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf], dtype=np.float32) expected_output = np.isinf(inp) node_def = helper.make_node("IsInf", ["X"], ["Y"]) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [None]), ], outputs=[helper.make_tensor_value_info("Y", TensorProto.BOOL, [None])]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"X": inp}) np.testing.assert_equal(output["Y"], expected_output)
Example #5
Source File: links.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, ch): super(Link_Linear, self).__init__(lambda x, n_batch_axes=1: x) if ch.b is None: self.n_out = 'output_size' self.nobias = True else: self.n_out = ch.b.shape[0] self.nobias = False if not(ch.W.data is None): self.n_in = ch.W.shape[1] else: self.n_in = None self.W = helper.make_tensor_value_info( '/W', TensorProto.FLOAT, [self.n_out, ('input_size' if (self.n_in is None) else self.n_in)]) if not self.nobias: self.b = helper.make_tensor_value_info( '/b', TensorProto.FLOAT, [self.n_out])
Example #6
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_eye_like(self): if legacy_opset_pre_ver(9): raise unittest.SkipTest("ONNX version {} doesn't support EyeLike.".format( defs.onnx_opset_version())) shape = [6, 10] off_diagonal_offset = -3 x = self._get_rnd_int(0, 100, shape=shape) y = np.eye(shape[0], shape[1], k=off_diagonal_offset, dtype=np.float32) node_def = helper.make_node("EyeLike", ["x"], ["y"], dtype=TensorProto.FLOAT, k=off_diagonal_offset) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("x", TensorProto.INT32, [None, None]) ], outputs=[ helper.make_tensor_value_info("y", TensorProto.FLOAT, [None, None]) ]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"x": x}) np.testing.assert_equal(output["y"], y)
Example #7
Source File: test_graph_import.py From ngraph-onnx with Apache License 2.0 | 6 votes |
def test_simple_graph(): node1 = make_node('Add', ['A', 'B'], ['X'], name='add_node1') node2 = make_node('Add', ['X', 'C'], ['Y'], name='add_node2') graph = make_graph([node1, node2], 'test_graph', [make_tensor_value_info('A', onnx.TensorProto.FLOAT, [1]), make_tensor_value_info('B', onnx.TensorProto.FLOAT, [1]), make_tensor_value_info('C', onnx.TensorProto.FLOAT, [1])], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, [1])]) model = make_model(graph, producer_name='ngraph ONNXImporter') ng_model_function = import_onnx_model(model) runtime = get_runtime() computation = runtime.computation(ng_model_function) assert np.array_equal(computation(1, 2, 3)[0], np.array([6.0], dtype=np.float32)) assert np.array_equal(computation(4, 5, 6)[0], np.array([15.0], dtype=np.float32))
Example #8
Source File: test_ops_matmul.py From ngraph-onnx with Apache License 2.0 | 6 votes |
def make_onnx_model_for_gemm_op(input_a, input_b, input_c, **kwargs): input_a_for_output = input_a input_b_for_output = input_b if kwargs.get('transA'): input_a_for_output = input_a.T if kwargs.get('transB'): input_b_for_output = input_b.T output_shape = np.dot(input_a_for_output, input_b_for_output).shape node = make_node('Gemm', ['A', 'B', 'C'], ['Y'], name='test_node', **kwargs) graph = make_graph([node], 'test_graph', [make_tensor_value_info('A', onnx.TensorProto.FLOAT, input_a.shape), make_tensor_value_info('B', onnx.TensorProto.FLOAT, input_b.shape), make_tensor_value_info('C', onnx.TensorProto.FLOAT, input_c.shape)], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, output_shape)]) model = make_model(graph, producer_name='ngraph ONNXImporter') return model
Example #9
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def _create_param_tensors(self, conv_params, param_category, suffix): """Creates the initializers with weights from the weights file together with the input tensors. Keyword arguments: conv_params -- a ConvParams object param_category -- the category of parameters to be created ('bn' or 'conv') suffix -- a string determining the sub-type of above param_category (e.g., 'weights' or 'bias') """ param_name, param_data, param_data_shape = self._load_one_param_type( conv_params, param_category, suffix) initializer_tensor = helper.make_tensor( param_name, TensorProto.FLOAT, param_data_shape, param_data) input_tensor = helper.make_tensor_value_info( param_name, TensorProto.FLOAT, param_data_shape) return initializer_tensor, input_tensor
Example #10
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def load_resize_scales(self, resize_params): """Returns the initializers with the value of the scale input tensor given by resize_params. Keyword argument: resize_params -- a ResizeParams object """ initializer = list() inputs = list() name = resize_params.generate_param_name() shape = resize_params.value.shape data = resize_params.value scale_init = helper.make_tensor( name, TensorProto.FLOAT, shape, data) scale_input = helper.make_tensor_value_info( name, TensorProto.FLOAT, shape) initializer.append(scale_init) inputs.append(scale_input) return initializer, inputs
Example #11
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def _create_param_tensors(self, conv_params, param_category, suffix): """Creates the initializers with weights from the weights file together with the input tensors. Keyword arguments: conv_params -- a ConvParams object param_category -- the category of parameters to be created ('bn' or 'conv') suffix -- a string determining the sub-type of above param_category (e.g., 'weights' or 'bias') """ param_name, param_data, param_data_shape = self._load_one_param_type( conv_params, param_category, suffix) initializer_tensor = helper.make_tensor( param_name, TensorProto.FLOAT, param_data_shape, param_data) input_tensor = helper.make_tensor_value_info( param_name, TensorProto.FLOAT, param_data_shape) return initializer_tensor, input_tensor
Example #12
Source File: yolov3_to_onnx.py From iAI with MIT License | 6 votes |
def _make_input_tensor(self, layer_name, layer_dict): """Create an ONNX input tensor from a 'net' layer and store the batch size. Keyword arguments: layer_name -- the layer's name (also the corresponding key in layer_configs) layer_dict -- a layer parameter dictionary (one element of layer_configs) """ batch_size = layer_dict['batch'] channels = layer_dict['channels'] height = layer_dict['height'] width = layer_dict['width'] self.batch_size = batch_size input_tensor = helper.make_tensor_value_info( str(layer_name), TensorProto.FLOAT, [ batch_size, channels, height, width]) self.input_tensor = input_tensor return layer_name, channels
Example #13
Source File: links.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, ch): super(Link_BatchNormalization, self).__init__( L.BatchNormalization(1)) self.n_out = ch.beta.shape[0] self.scale = helper.make_tensor_value_info( '/gamma', TensorProto.FLOAT, [self.n_out]) self.B = helper.make_tensor_value_info( '/beta', TensorProto.FLOAT, [self.n_out]) self.mean = helper.make_tensor_value_info( '/avg_mean', TensorProto.FLOAT, [self.n_out]) self.var = helper.make_tensor_value_info( '/avg_var', TensorProto.FLOAT, [self.n_out]) self.eps = ch.eps self.momentum = ch.decay
Example #14
Source File: links.py From chainer-compiler with MIT License | 6 votes |
def __init__(self, ch): super(Link_NStepLSTM, self).__init__(L.NStepLSTM(1, 1, 1, 0)) hd = ch.children().__next__() if not(hd.w0 is None): self.n_in = hd.w0.shape[1] else: self.n_in = None self.out_size = ch.out_size self.n_layers = ch.n_layers self.dropout = ch.dropout self.ws = [] self.bs = [] for i in range(self.n_layers): ws = [] bs = [] for j in range(8): ws.append(helper.make_tensor_value_info( ('/%d/w%d' % (i, j)), TensorProto.FLOAT, ["TODO"])) bs.append(helper.make_tensor_value_info( ('/%d/b%d' % (i, j)), TensorProto.FLOAT, ["TODO"])) self.ws.append(ws) self.bs.append(bs)
Example #15
Source File: onnx_converters.py From chainer-compiler with MIT License | 6 votes |
def new_tensor_impl(self, ndarray_, name): ''' generate a tensor which contains np data it is for constant input ''' if not config.float_restrict: if ndarray_.dtype == np.float64: ndarray_ = ndarray_.astype(np.float32) tensor = numpy_helper.from_array(ndarray_, name=name) dt = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(ndarray_.dtype)] tensor_value = oh.make_tensor_value_info(name, dt, ndarray_.shape) self.generator.onnx_tensors[name] = tensor_value return tensor, tensor_value
Example #16
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_gather_nd(self): if legacy_opset_pre_ver(11): raise unittest.SkipTest( "ONNX version {} doesn't support GatherND.".format( defs.onnx_opset_version())) # valid positive and negative indices for elements data = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) indices = np.array([[0, 0], [1, -3]], dtype=np.int64) ref_output = np.array([1, 4], dtype=np.int32) node_def = helper.make_node("GatherND", ["data", "indices"], ["outputs"]) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("data", TensorProto.INT32, [None, None]), helper.make_tensor_value_info("indices", TensorProto.INT64, [None, None]) ], outputs=[ helper.make_tensor_value_info("outputs", TensorProto.INT32, [None]) ]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"data": data, "indices": indices}) np.testing.assert_almost_equal(output["outputs"], ref_output)
Example #17
Source File: test_model_wrappers.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_attribute_wrapper(): def attribute_value_test(attribute_value): node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value) model = make_model(make_graph([node], 'test_graph', [ make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]), ], []), producer_name='ngraph') wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute') return wrapped_attribute.get_value() tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1]) assert attribute_value_test(1) == 1 assert type(attribute_value_test(1)) == np.long assert attribute_value_test(1.0) == 1.0 assert type(attribute_value_test(1.0)) == np.float assert attribute_value_test('test') == 'test' assert attribute_value_test(tensor)._proto == tensor assert attribute_value_test([1, 2, 3]) == [1, 2, 3] assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0] assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2'] assert attribute_value_test([tensor, tensor])[1]._proto == tensor
Example #18
Source File: utils.py From ngraph-python with Apache License 2.0 | 6 votes |
def convert_and_calculate(onnx_node, data_inputs, data_outputs): # type: (NodeProto, List[np.ndarray], List[np.ndarray]) -> List[np.ndarray] """ Convert ONNX node to ngraph node and perform computation on input data. :param onnx_node: ONNX NodeProto describing a computation node :param data_inputs: list of numpy ndarrays with input data :param data_outputs: list of numpy ndarrays with expected output data :return: list of numpy ndarrays with computed output """ transformer = get_transformer() input_tensors = [make_tensor_value_info(name, onnx.TensorProto.FLOAT, value.shape) for name, value in zip(onnx_node.input, data_inputs)] output_tensors = [make_tensor_value_info(name, onnx.TensorProto.FLOAT, value.shape) for name, value in zip(onnx_node.output, data_outputs)] graph = make_graph([onnx_node], 'test_graph', input_tensors, output_tensors) model = make_model(graph, producer_name='ngraph ONNXImporter') ng_results = [] for ng_model in import_onnx_model(model): computation = transformer.computation(ng_model['output'], *ng_model['inputs']) ng_results.append(computation(*data_inputs)) return ng_results
Example #19
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_power_iteration(x_shape, y_shape): if isinstance(y_shape, int): y_shape = [y_shape] x = np.random.uniform(size=x_shape).astype(np.float32) y = np.random.uniform(size=y_shape).astype(np.float32) np_res = np.power(x, y).astype(np.float32) res = helper.make_node("Pow", ['x', 'y'], ['out']) graph = helper.make_graph([res], 'power_test', inputs = [helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(np_res.shape))]) model = helper.make_model(graph, producer_name='power_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape) np.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5)
Example #20
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_squeeze(): in_shape = (1, 3, 1, 3, 1, 1) out_shape = (3, 3) y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5]) graph = helper.make_graph([y], 'squeeze_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_shape, tvm_out.shape)
Example #21
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_unsqueeze(): in_shape = (3, 3) axis = (0, 3, 4) out_shape = (1, 3, 3, 1, 1) y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis)) graph = helper.make_graph([y], 'squeeze_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_shape, tvm_out.shape)
Example #22
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_slice_iteration(indata, outdata, starts, ends, axes=None): if axes: y = helper.make_node("Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends) else: y = helper.make_node("Slice", ['in'], ['out'], starts=starts, ends=ends) graph = helper.make_graph([y], 'slice_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name='slice_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32') np.testing.assert_allclose(outdata, tvm_out)
Example #23
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs): indata = np.random.uniform(size=(2, 4, 5, 6)).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ['in'], ['out'], **kwargs) graph = helper.make_graph([y], opname+'_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, dtype) np.testing.assert_allclose(outdata, tvm_out)
Example #24
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_matmul(): a_shape = (4, 3) b_shape = (3, 4) a_array = np.random.uniform(size=a_shape).astype('float32') b_array = np.random.uniform(size=b_shape).astype('float32') out_np = np.matmul(a_array, b_array) mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph([mul_node], "matmul_test", inputs = [helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='matmul_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_array, b_array], target, ctx, out_np.shape) np.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
Example #25
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_upsample_nearest(): scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in'], ['out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.upsampling_python(in_array, scale, "NCHW") graph = helper.make_graph([y], 'upsample_nearest_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='upsample_nearest_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_array, tvm_out)
Example #26
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_softmax(inshape, axis): opname = 'Softmax' indata = np.random.uniform(size=inshape).astype(np.float32) outshape = inshape outdata = topi.testing.softmax_python(indata) if isinstance(axis, int): y = helper.make_node(opname, ['in'], ['out'], axis = axis) elif axis is None: y = helper.make_node(opname, ['in'], ['out']) graph = helper.make_graph([y], opname+'_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outshape, 'float32') np.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
Example #27
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def verify_hardsigmoid(input_dim, alpha, beta): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.clip(a_np1 * alpha + beta, 0, 1) hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], ["out"], alpha=alpha, beta=beta) graph = helper.make_graph([hardsigmoid_node], "HardSigmoid_test", inputs = [helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='HardSigmoid_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape) np.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
Example #28
Source File: backend.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def make_node_test_model(node, inputs, use_weights=True): # HACK TODO: The output info is unknown here; not sure what the best solution is output_dtype = np.float32 # Dummy value only output_shape = [-99] # Dummy value only graph_inputs = [onnx_helper.make_tensor_value_info( name, np2onnx_dtype(array.dtype), array.shape) for name, array in zip(node.input, inputs)] graph_outputs = [onnx_helper.make_tensor_value_info( name, np2onnx_dtype(output_dtype), output_shape) for name in node.output] if use_weights: # Add initializers for all inputs except the first initializers = [onnx_helper.make_tensor( name, np2onnx_dtype(array.dtype), array.shape, array.flatten().tolist()) for name, array in zip(node.input[1:], inputs[1:])] else: initializers = [] graph = onnx_helper.make_graph( [node], "RunNodeGraph_" + node.op_type, graph_inputs, graph_outputs, initializer=initializers) model = onnx_helper.make_model(graph) return model
Example #29
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_nop_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_Y"], ["_Y2"], perm=[0, 1])], [(TensorProto.FLOAT, (2, 3), "Y")], [(TensorProto.FLOAT, (2, 3), "Y2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (2, 3))]) optimized_model = self._optimized(graph, ["eliminate_nop_transpose"]) def check_transpose(node): # type: (NodeProto) -> None assert node.op_type != "Transpose" self._visit_all_nodes_recursive(optimized_model.graph, check_transpose) # Use of the output from the Transpose node in the main graph should # have been replaced with the input to the identity node assert len(optimized_model.graph.output) == 2 assert optimized_model.graph.output[0].name == "X" # Use of the output from the Transpose node in the loop graph should # have been replaced with the input to that identity node assert len(optimized_model.graph.node[2].attribute[0].g.output) == 2 assert optimized_model.graph.node[2].attribute[0].g.output[1].name == "_Y"
Example #30
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_eliminate_unused_initializer_input(self): # type: () -> None add = helper.make_node("Add", ["X", "Y"], ["Z"]) graph = helper.make_graph( [add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (1, 2)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 2))], [helper.make_tensor("A", TensorProto.FLOAT, dims=(2, 3), vals=np.random.randn(2, 3).astype(np.float32).tobytes(), raw=True)]) optimized_model = self._optimized(graph, ["eliminate_unused_initializer"]) assert len(list(optimized_model.graph.initializer)) == 0 assert len(optimized_model.graph.input) == 2