Python onnx.helper.make_graph() Examples
The following are 30
code examples of onnx.helper.make_graph().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
onnx.helper
, or try the search function
.
Example #1
Source File: onnx_import_test.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 7 votes |
def test_broadcast(): """Test for broadcasting in onnx operators.""" input1 = np.random.rand(1, 3, 4, 5).astype("float32") input2 = np.random.rand(1, 5).astype("float32") inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)), helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))] outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))] nodes = [helper.make_node("Add", ["input1", "input2"], ["output"])] graph = helper.make_graph(nodes, "bcast_test", inputs, outputs) bcast_model = helper.make_model(graph) bkd_rep = mxnet_backend.prepare(bcast_model) numpy_op = input1 + input2 output = bkd_rep.run([input1, input2]) npt.assert_almost_equal(output[0], numpy_op)
Example #2
Source File: test_ops_matmul.py From ngraph-onnx with Apache License 2.0 | 7 votes |
def make_onnx_model_for_matmul_op(input_left, input_right): output_shape = np.matmul(input_left, input_right).shape node = make_node('MatMul', ['X', 'Y'], ['Z'], name='test_node') graph = make_graph([node], 'test_graph', [make_tensor_value_info('X', onnx.TensorProto.FLOAT, input_left.shape), make_tensor_value_info('Y', onnx.TensorProto.FLOAT, input_right.shape)], [make_tensor_value_info('Z', onnx.TensorProto.FLOAT, output_shape)]) model = make_model(graph, producer_name='ngraph ONNXImporter') return model
Example #3
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 7 votes |
def test_is_inf(self): if legacy_opset_pre_ver(10): raise unittest.SkipTest("ONNX version {} doesn't support IsInf.".format( defs.onnx_opset_version())) inp = np.array([-1.2, np.nan, np.inf, 2.8, np.NINF, np.inf], dtype=np.float32) expected_output = np.isinf(inp) node_def = helper.make_node("IsInf", ["X"], ["Y"]) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [None]), ], outputs=[helper.make_tensor_value_info("Y", TensorProto.BOOL, [None])]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"X": inp}) np.testing.assert_equal(output["Y"], expected_output)
Example #4
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _make_fake_if_op(self, true_nodes, # type: Sequence[NodeProto] false_nodes, # type: Sequence[NodeProto] output_types # type: Sequence[Tuple[TensorProto.DataType, Sequence[int], Text]] ): # type: (...) -> List[NodeProto] true = helper.make_tensor("condition", TensorProto.BOOL, (), [True]) true_graph = helper.make_graph(true_nodes, "true_graph", [], []) false_graph = helper.make_graph(false_nodes, "false_graph", [], []) if_inputs = ["condition"] if_outputs = [name for _, _, name in output_types] retval_nodes = [ helper.make_node("Constant", [], ["condition"], value=true), helper.make_node("If", if_inputs, if_outputs, then_branch=true_graph, else_branch=false_graph) ] return retval_nodes # fn is a function that takes a single node as argument
Example #5
Source File: onnx_import_test.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_lesser(): """Test for logical greater in onnx operators.""" input1 = np.random.rand(1, 3, 4, 5).astype("float32") input2 = np.random.rand(1, 5).astype("float32") inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)), helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))] outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))] nodes = [helper.make_node("Less", ["input1", "input2"], ["output"])] graph = helper.make_graph(nodes, "lesser_test", inputs, outputs) greater_model = helper.make_model(graph) bkd_rep = mxnet_backend.prepare(greater_model) numpy_op = np.less(input1, input2).astype(np.float32) output = bkd_rep.run([input1, input2]) npt.assert_almost_equal(output[0], numpy_op)
Example #6
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_squeeze_1d_bias_no_fuse(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (3,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 1, 3))], value_info=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1)), ] ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 2 assert optimized_model.graph.node[0].op_type == 'Conv' assert optimized_model.graph.node[1].op_type == 'Add'
Example #7
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_use_conv_shape(self): # type: () -> None sub = helper.make_node("Sub", ["M", "N"], ["Y"]) conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [sub, conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("M", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("N", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1, 16, 1, 1))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 1, 1))], value_info=[ helper.make_tensor_value_info("Z", TensorProto.FLOAT, (1, 16, 1, 1)) ], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(optimized_model.graph.node) == 3 assert optimized_model.graph.node[0].op_type == 'Sub' assert optimized_model.graph.node[1].op_type == 'Squeeze' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z' assert optimized_model.graph.output[0].type.tensor_type.elem_type == TensorProto.FLOAT assert len(optimized_model.graph.output[0].type.tensor_type.shape.dim) == 4
Example #8
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2]), helper.make_node("Transpose", ["Y"], ["Z"], perm=[2, 0, 1]), helper.make_node("Transpose", ["Z"], ["A"], perm=[2, 0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_X"], ["_Y2"], perm=[1, 0, 2]), helper.make_node("Transpose", ["_Y2"], ["_Y3"], perm=[2, 0, 1]), helper.make_node("Transpose", ["_Y3"], ["_Y4"], perm=[2, 0, 1])], [(TensorProto.FLOAT, (2, 3), "X")], [(TensorProto.FLOAT, (2, 3), "Y4")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))], [helper.make_tensor_value_info("A", TensorProto.FLOAT, (4, 3, 2)), helper.make_tensor_value_info("Y4", TensorProto.FLOAT, (4, 3, 2))]) optimized_model = self._optimized(graph, ["fuse_consecutive_transposes"]) # Transpose, Constant (trip count), Constant (cond), Loop assert len(list(optimized_model.graph.node)) == 4 # Transpose assert len(optimized_model.graph.node[3].attribute[0].g.node) == 1
Example #9
Source File: test_ops_matmul.py From ngraph-onnx with Apache License 2.0 | 6 votes |
def make_onnx_model_for_gemm_op(input_a, input_b, input_c, **kwargs): input_a_for_output = input_a input_b_for_output = input_b if kwargs.get('transA'): input_a_for_output = input_a.T if kwargs.get('transB'): input_b_for_output = input_b.T output_shape = np.dot(input_a_for_output, input_b_for_output).shape node = make_node('Gemm', ['A', 'B', 'C'], ['Y'], name='test_node', **kwargs) graph = make_graph([node], 'test_graph', [make_tensor_value_info('A', onnx.TensorProto.FLOAT, input_a.shape), make_tensor_value_info('B', onnx.TensorProto.FLOAT, input_b.shape), make_tensor_value_info('C', onnx.TensorProto.FLOAT, input_c.shape)], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, output_shape)]) model = make_model(graph, producer_name='ngraph ONNXImporter') return model
Example #10
Source File: pb_wrapper.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def make_graph_proto(self): self._clean_graph() self._fix_data_type() if IS_PYTHON3: params = list(inspect.signature(make_graph).parameters.keys()) else: params = inspect.getargspec(make_graph).args kwargs = { "initializer": self.consts_proto, "value_info": self.value_info_proto } return make_graph(self.nodes_proto, self._name, self.inputs_proto, self.outputs_proto, **dict([(k, kwargs[k]) for k in kwargs if k in params]))
Example #11
Source File: test_ops_unary.py From ngraph-onnx with Apache License 2.0 | 6 votes |
def test_identity(): np.random.seed(133391) shape = [2, 4] input_data = np.random.randn(*shape).astype(np.float32) identity_node = make_node('Identity', inputs=['x'], outputs=['y']) ng_results = run_node(identity_node, [input_data]) assert np.array_equal(ng_results, [input_data]) node1 = make_node('Add', inputs=['A', 'B'], outputs=['add1'], name='add_node1') node2 = make_node('Identity', inputs=['add1'], outputs=['identity1'], name='identity_node1') node3 = make_node('Abs', inputs=['identity1'], outputs=['Y'], name='abs_node1') graph = make_graph([node1, node2, node3], 'test_graph', [make_tensor_value_info('A', onnx.TensorProto.FLOAT, shape), make_tensor_value_info('B', onnx.TensorProto.FLOAT, shape)], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, shape)]) model = make_model(graph, producer_name='ngraph ONNX Importer') ng_model_function = import_onnx_model(model) runtime = get_runtime() computation = runtime.computation(ng_model_function) ng_results = computation(input_data, input_data) expected_result = np.abs(input_data + input_data) assert np.array_equal(ng_results[0], expected_result)
Example #12
Source File: test_graph_import.py From ngraph-onnx with Apache License 2.0 | 6 votes |
def test_simple_graph(): node1 = make_node('Add', ['A', 'B'], ['X'], name='add_node1') node2 = make_node('Add', ['X', 'C'], ['Y'], name='add_node2') graph = make_graph([node1, node2], 'test_graph', [make_tensor_value_info('A', onnx.TensorProto.FLOAT, [1]), make_tensor_value_info('B', onnx.TensorProto.FLOAT, [1]), make_tensor_value_info('C', onnx.TensorProto.FLOAT, [1])], [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, [1])]) model = make_model(graph, producer_name='ngraph ONNXImporter') ng_model_function = import_onnx_model(model) runtime = get_runtime() computation = runtime.computation(ng_model_function) assert np.array_equal(computation(1, 2, 3)[0], np.array([6.0], dtype=np.float32)) assert np.array_equal(computation(4, 5, 6)[0], np.array([15.0], dtype=np.float32))
Example #13
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_fuse_add_bias_into_conv_use_weight_shape_with_tile(self): # type: () -> None conv = helper.make_node("Conv", ["X", "Y"], ["Z"]) add = helper.make_node("Add", ["Z", "A"], ["B"]) graph = helper.make_graph( [conv, add], "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (1, 5, 3, 3)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (16, 5, 3, 3)), helper.make_tensor_value_info("A", TensorProto.FLOAT, (1,))], [helper.make_tensor_value_info("B", TensorProto.FLOAT, (1, 16, 1, 1))], ) optimized_model = self._optimized(graph, ["fuse_add_bias_into_conv"]) assert len(list(optimized_model.graph.node)) == 3 assert len(optimized_model.graph.value_info) == 1 assert optimized_model.graph.value_info[0].type.tensor_type.elem_type == TensorProto.INT64 assert len(optimized_model.graph.value_info[0].type.tensor_type.shape.dim) == 1 assert optimized_model.graph.node[0].op_type == 'Constant' assert optimized_model.graph.node[1].op_type == 'Tile' assert optimized_model.graph.node[2].op_type == 'Conv' assert optimized_model.graph.output[0].name == 'Z'
Example #14
Source File: test_model.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_relu_node_inplace(self): X = np.random.randn(3, 2).astype(np.float32) Y_ref = np.clip(X, 0, np.inf) node_def = helper.make_node("Relu", ["X"], ["X1"]) graph_def = helper.make_graph( [node_def], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])], outputs=[ helper.make_tensor_value_info("X1", TensorProto.FLOAT, [3, 2]) ]) tf_rep = prepare(helper.make_model(graph_def)) output = tf_rep.run({"X": X}) np.testing.assert_almost_equal(output.X1, Y_ref)
Example #15
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_eye_like(self): if legacy_opset_pre_ver(9): raise unittest.SkipTest("ONNX version {} doesn't support EyeLike.".format( defs.onnx_opset_version())) shape = [6, 10] off_diagonal_offset = -3 x = self._get_rnd_int(0, 100, shape=shape) y = np.eye(shape[0], shape[1], k=off_diagonal_offset, dtype=np.float32) node_def = helper.make_node("EyeLike", ["x"], ["y"], dtype=TensorProto.FLOAT, k=off_diagonal_offset) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("x", TensorProto.INT32, [None, None]) ], outputs=[ helper.make_tensor_value_info("y", TensorProto.FLOAT, [None, None]) ]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"x": x}) np.testing.assert_equal(output["y"], y)
Example #16
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_gather_nd(self): if legacy_opset_pre_ver(11): raise unittest.SkipTest( "ONNX version {} doesn't support GatherND.".format( defs.onnx_opset_version())) # valid positive and negative indices for elements data = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32) indices = np.array([[0, 0], [1, -3]], dtype=np.int64) ref_output = np.array([1, 4], dtype=np.int32) node_def = helper.make_node("GatherND", ["data", "indices"], ["outputs"]) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("data", TensorProto.INT32, [None, None]), helper.make_tensor_value_info("indices", TensorProto.INT64, [None, None]) ], outputs=[ helper.make_tensor_value_info("outputs", TensorProto.INT32, [None]) ]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"data": data, "indices": indices}) np.testing.assert_almost_equal(output["outputs"], ref_output)
Example #17
Source File: optimizer_test.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_nop_transpose(self): # type: () -> None nodes = [helper.make_node("Transpose", ["X"], ["Y"], perm=[0, 1])] nodes.extend(self._make_fake_loop_op( [helper.make_node("Transpose", ["_Y"], ["_Y2"], perm=[0, 1])], [(TensorProto.FLOAT, (2, 3), "Y")], [(TensorProto.FLOAT, (2, 3), "Y2")])) graph = helper.make_graph( nodes, "test", [helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3))], [helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 3)), helper.make_tensor_value_info("Y2", TensorProto.FLOAT, (2, 3))]) optimized_model = self._optimized(graph, ["eliminate_nop_transpose"]) def check_transpose(node): # type: (NodeProto) -> None assert node.op_type != "Transpose" self._visit_all_nodes_recursive(optimized_model.graph, check_transpose) # Use of the output from the Transpose node in the main graph should # have been replaced with the input to the identity node assert len(optimized_model.graph.output) == 2 assert optimized_model.graph.output[0].name == "X" # Use of the output from the Transpose node in the loop graph should # have been replaced with the input to that identity node assert len(optimized_model.graph.node[2].attribute[0].g.output) == 2 assert optimized_model.graph.node[2].attribute[0].g.output[1].name == "_Y"
Example #18
Source File: test_dynamic_shape.py From onnx-tensorflow with Apache License 2.0 | 6 votes |
def test_flatten(self): shape = [2, 3, 4] x = self._get_rnd_float32(shape=shape) axis = 1 node_def = helper.make_node("Flatten", ["X"], ["Y"], axis=axis) graph_def = helper.make_graph( [node_def], name="test_unknown_shape", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, [None, None, None]) ], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, [None])]) tf_rep = onnx_graph_to_tensorflow_rep(graph_def) output = tf_rep.run({"X": x}) new_shape = (np.prod(shape[0:axis]).astype(int), -1) np.testing.assert_almost_equal(output["Y"], np.reshape(x, new_shape))
Example #19
Source File: backend.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def make_node_test_model(node, inputs, use_weights=True): # HACK TODO: The output info is unknown here; not sure what the best solution is output_dtype = np.float32 # Dummy value only output_shape = [-99] # Dummy value only graph_inputs = [onnx_helper.make_tensor_value_info( name, np2onnx_dtype(array.dtype), array.shape) for name, array in zip(node.input, inputs)] graph_outputs = [onnx_helper.make_tensor_value_info( name, np2onnx_dtype(output_dtype), output_shape) for name in node.output] if use_weights: # Add initializers for all inputs except the first initializers = [onnx_helper.make_tensor( name, np2onnx_dtype(array.dtype), array.shape, array.flatten().tolist()) for name, array in zip(node.input[1:], inputs[1:])] else: initializers = [] graph = onnx_helper.make_graph( [node], "RunNodeGraph_" + node.op_type, graph_inputs, graph_outputs, initializer=initializers) model = onnx_helper.make_model(graph) return model
Example #20
Source File: test_model_wrappers.py From ngraph-python with Apache License 2.0 | 6 votes |
def test_attribute_wrapper(): def attribute_value_test(attribute_value): node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value) model = make_model(make_graph([node], 'test_graph', [ make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]), ], []), producer_name='ngraph') wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute') return wrapped_attribute.get_value() tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1]) assert attribute_value_test(1) == 1 assert type(attribute_value_test(1)) == np.long assert attribute_value_test(1.0) == 1.0 assert type(attribute_value_test(1.0)) == np.float assert attribute_value_test('test') == 'test' assert attribute_value_test(tensor)._proto == tensor assert attribute_value_test([1, 2, 3]) == [1, 2, 3] assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0] assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2'] assert attribute_value_test([tensor, tensor])[1]._proto == tensor
Example #21
Source File: utils.py From ngraph-python with Apache License 2.0 | 6 votes |
def convert_and_calculate(onnx_node, data_inputs, data_outputs): # type: (NodeProto, List[np.ndarray], List[np.ndarray]) -> List[np.ndarray] """ Convert ONNX node to ngraph node and perform computation on input data. :param onnx_node: ONNX NodeProto describing a computation node :param data_inputs: list of numpy ndarrays with input data :param data_outputs: list of numpy ndarrays with expected output data :return: list of numpy ndarrays with computed output """ transformer = get_transformer() input_tensors = [make_tensor_value_info(name, onnx.TensorProto.FLOAT, value.shape) for name, value in zip(onnx_node.input, data_inputs)] output_tensors = [make_tensor_value_info(name, onnx.TensorProto.FLOAT, value.shape) for name, value in zip(onnx_node.output, data_outputs)] graph = make_graph([onnx_node], 'test_graph', input_tensors, output_tensors) model = make_model(graph, producer_name='ngraph ONNXImporter') ng_results = [] for ng_model in import_onnx_model(model): computation = transformer.computation(ng_model['output'], *ng_model['inputs']) ng_results.append(computation(*data_inputs)) return ng_results
Example #22
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def verify_hardsigmoid(input_dim, alpha, beta): dtype = 'float32' a_np1 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.clip(a_np1 * alpha + beta, 0, 1) hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], ["out"], alpha=alpha, beta=beta) graph = helper.make_graph([hardsigmoid_node], "HardSigmoid_test", inputs = [helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(b_np.shape))]) model = helper.make_model(graph, producer_name='HardSigmoid_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape) np.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
Example #23
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_power_iteration(x_shape, y_shape): if isinstance(y_shape, int): y_shape = [y_shape] x = np.random.uniform(size=x_shape).astype(np.float32) y = np.random.uniform(size=y_shape).astype(np.float32) np_res = np.power(x, y).astype(np.float32) res = helper.make_node("Pow", ['x', 'y'], ['out']) graph = helper.make_graph([res], 'power_test', inputs = [helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(np_res.shape))]) model = helper.make_model(graph, producer_name='power_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape) np.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5)
Example #24
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_squeeze(): in_shape = (1, 3, 1, 3, 1, 1) out_shape = (3, 3) y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5]) graph = helper.make_graph([y], 'squeeze_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_shape, tvm_out.shape)
Example #25
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_unsqueeze(): in_shape = (3, 3) axis = (0, 3, 4) out_shape = (1, 3, 3, 1, 1) y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis)) graph = helper.make_graph([y], 'squeeze_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='squeeze_test') for target, ctx in ctx_list(): x = np.random.uniform(size=in_shape).astype('float32') tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_shape, tvm_out.shape)
Example #26
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_slice_iteration(indata, outdata, starts, ends, axes=None): if axes: y = helper.make_node("Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends) else: y = helper.make_node("Slice", ['in'], ['out'], starts=starts, ends=ends) graph = helper.make_graph([y], 'slice_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name='slice_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32') np.testing.assert_allclose(outdata, tvm_out)
Example #27
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs): indata = np.random.uniform(size=(2, 4, 5, 6)).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ['in'], ['out'], **kwargs) graph = helper.make_graph([y], opname+'_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, dtype) np.testing.assert_allclose(outdata, tvm_out)
Example #28
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def test_matmul(): a_shape = (4, 3) b_shape = (3, 4) a_array = np.random.uniform(size=a_shape).astype('float32') b_array = np.random.uniform(size=b_shape).astype('float32') out_np = np.matmul(a_array, b_array) mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph([mul_node], "matmul_test", inputs = [helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_np.shape))]) model = helper.make_model(graph, producer_name='matmul_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, [a_array, b_array], target, ctx, out_np.shape) np.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
Example #29
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_softmax(inshape, axis): opname = 'Softmax' indata = np.random.uniform(size=inshape).astype(np.float32) outshape = inshape outdata = topi.testing.softmax_python(indata) if isinstance(axis, int): y = helper.make_node(opname, ['in'], ['out'], axis = axis) elif axis is None: y = helper.make_node(opname, ['in'], ['out']) graph = helper.make_graph([y], opname+'_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))]) model = helper.make_model(graph, producer_name=opname+'_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, indata, target, ctx, outshape, 'float32') np.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
Example #30
Source File: test_forward.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def _test_upsample_nearest(): scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3*scale, 3*scale) y = helper.make_node("Upsample", ['in'], ['out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = topi.testing.upsampling_python(in_array, scale, "NCHW") graph = helper.make_graph([y], 'upsample_nearest_test', inputs = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))]) model = helper.make_model(graph, producer_name='upsample_nearest_test') for target, ctx in ctx_list(): tvm_out = get_tvm_output(model, in_array, target, ctx, out_shape, 'float32') np.testing.assert_allclose(out_array, tvm_out)