Python tensorflow.contrib.framework.python.ops.arg_scope() Examples

The following are 30 code examples of tensorflow.contrib.framework.python.ops.arg_scope(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.framework.python.ops , or try the search function .
Example #1
Source File: vgg16.py    From Chinese-Character-and-Calligraphic-Image-Processing with MIT License 6 votes vote down vote up
def vgg_arg_scope(weight_decay=0.0005):
  """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
      return arg_sc 
Example #2
Source File: resnet_v2_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 321, 321, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 21, 21, 8],
          'resnet/block3': [2, 11, 11, 16],
          'resnet/block4': [2, 11, 11, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #3
Source File: resnet_v2_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testClassificationShapes(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 28, 28, 4],
          'resnet/block2': [2, 14, 14, 8],
          'resnet/block3': [2, 7, 7, 16],
          'resnet/block4': [2, 7, 7, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #4
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(
                inputs, None, global_pool=False, output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, global_pool=False)
            sess.run(variables.global_variables_initializer())
            self.assertAllClose(
                output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) 
Example #5
Source File: resnet_v2_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testRootlessFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 128, 128, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs,
          num_classes,
          global_pool,
          include_root_block=False,
          scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 64, 64, 4],
          'resnet/block2': [2, 32, 32, 8],
          'resnet/block3': [2, 16, 16, 16],
          'resnet/block4': [2, 16, 16, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #6
Source File: resnet_v2_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testAtrousFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    output_stride = 8
    inputs = create_test_input(2, 321, 321, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs,
          num_classes,
          global_pool,
          output_stride=output_stride,
          scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 41, 41, 8],
          'resnet/block3': [2, 41, 41, 16],
          'resnet/block4': [2, 41, 41, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #7
Source File: resnet_v2_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(
                inputs, None, global_pool=False, output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, global_pool=False)
            sess.run(variables.global_variables_initializer())
            self.assertAllClose(
                output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) 
Example #8
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testAtrousFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    output_stride = 8
    inputs = create_test_input(2, 321, 321, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs,
          num_classes,
          global_pool,
          output_stride=output_stride,
          scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 41, 41, 8],
          'resnet/block3': [2, 41, 41, 16],
          'resnet/block4': [2, 41, 41, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #9
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testRootlessFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 128, 128, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs,
          num_classes,
          global_pool,
          include_root_block=False,
          scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 64, 64, 4],
          'resnet/block2': [2, 32, 32, 8],
          'resnet/block3': [2, 16, 16, 16],
          'resnet/block4': [2, 16, 16, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #10
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testFullyConvolutionalEndpointShapes(self):
    global_pool = False
    num_classes = 10
    inputs = create_test_input(2, 321, 321, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 41, 41, 4],
          'resnet/block2': [2, 21, 21, 8],
          'resnet/block3': [2, 11, 11, 16],
          'resnet/block4': [2, 11, 11, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #11
Source File: vgg.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def vgg_arg_scope(weight_decay=0.0005):
  """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
      return arg_sc 
Example #12
Source File: tf_train.py    From iaf with MIT License 6 votes vote down vote up
def up(self, input, **_):
        hps = self.hps
        h_size = hps.h_size
        z_size = hps.z_size
        stride = [2, 2] if self.downsample else [1, 1]

        with arg_scope([conv2d]):
            x = tf.nn.elu(input)
            x = conv2d("up_conv1", x, 2 * z_size + 2 * h_size, stride=stride)
            self.qz_mean, self.qz_logsd, self.up_context, h = split(x, 1, [z_size, z_size, h_size, h_size])

            h = tf.nn.elu(h)
            h = conv2d("up_conv3", h, h_size)
            if self.downsample:
                input = resize_nearest_neighbor(input, 0.5)
            return input + 0.1 * h 
Example #13
Source File: truncated_vgg.py    From luminoth with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def vgg_arg_scope(weight_decay=0.0005):
    """Defines the VGG arg scope.

    Args:
      weight_decay: The l2 regularization coefficient.

    Returns:
      An arg_scope.
    """
    with arg_scope(
        [layers.conv2d, layers_lib.fully_connected],
        activation_fn=nn_ops.relu,
        weights_regularizer=regularizers.l2_regularizer(weight_decay),
        biases_initializer=init_ops.zeros_initializer()
    ):
        with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
            return arg_sc 
Example #14
Source File: truncated_vgg.py    From Tabulo with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def vgg_arg_scope(weight_decay=0.0005):
    """Defines the VGG arg scope.

    Args:
      weight_decay: The l2 regularization coefficient.

    Returns:
      An arg_scope.
    """
    with arg_scope(
        [layers.conv2d, layers_lib.fully_connected],
        activation_fn=nn_ops.relu,
        weights_regularizer=regularizers.l2_regularizer(weight_decay),
        biases_initializer=init_ops.zeros_initializer()
    ):
        with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
            return arg_sc 
Example #15
Source File: truncated_vgg.py    From Table-Detection-using-Deep-learning with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def vgg_arg_scope(weight_decay=0.0005):
    """Defines the VGG arg scope.

    Args:
      weight_decay: The l2 regularization coefficient.

    Returns:
      An arg_scope.
    """
    with arg_scope(
        [layers.conv2d, layers_lib.fully_connected],
        activation_fn=nn_ops.relu,
        weights_regularizer=regularizers.l2_regularizer(weight_decay),
        biases_initializer=init_ops.zeros_initializer()
    ):
        with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
            return arg_sc 
Example #16
Source File: util.py    From predictron with MIT License 6 votes vote down vote up
def predictron_arg_scope(weight_decay=0.0001,
                         batch_norm_decay=0.997,
                         batch_norm_epsilon=1e-5,
                         batch_norm_scale=True):
  batch_norm_params = {
    'decay': batch_norm_decay,
    'epsilon': batch_norm_epsilon,
    'scale': batch_norm_scale,
    'updates_collections': tf.GraphKeys.UPDATE_OPS,
  }

  # Set weight_decay for weights in Conv and FC layers.
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope(
        [layers.conv2d],
        weights_initializer=initializers.variance_scaling_initializer(),
        activation_fn=None,
        normalizer_fn=layers_lib.batch_norm,
        normalizer_params=batch_norm_params) as sc:
      return sc 
Example #17
Source File: vgg.py    From lambda-packs with MIT License 6 votes vote down vote up
def vgg_arg_scope(weight_decay=0.0005):
  """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
      return arg_sc 
Example #18
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testClassificationShapes(self):
    global_pool = True
    num_classes = 10
    inputs = create_test_input(2, 224, 224, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_small(
          inputs, num_classes, global_pool, scope='resnet')
      endpoint_to_shape = {
          'resnet/block1': [2, 28, 28, 4],
          'resnet/block2': [2, 14, 14, 8],
          'resnet/block3': [2, 7, 7, 16],
          'resnet/block4': [2, 7, 7, 32]
      }
      for endpoint in endpoint_to_shape:
        shape = endpoint_to_shape[endpoint]
        self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape) 
Example #19
Source File: tfops.py    From glow with MIT License 6 votes vote down vote up
def actnorm(name, x, scale=1., logdet=None, logscale_factor=3., batch_variance=False, reverse=False, init=False, trainable=True):
    if arg_scope([get_variable_ddi], trainable=trainable):
        if not reverse:
            x = actnorm_center(name+"_center", x, reverse)
            x = actnorm_scale(name+"_scale", x, scale, logdet,
                              logscale_factor, batch_variance, reverse, init)
            if logdet != None:
                x, logdet = x
        else:
            x = actnorm_scale(name + "_scale", x, scale, logdet,
                              logscale_factor, batch_variance, reverse, init)
            if logdet != None:
                x, logdet = x
            x = actnorm_center(name+"_center", x, reverse)
        if logdet != None:
            return x, logdet
        return x

# Activation normalization 
Example #20
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testEndPointsV1(self):
    """Test the end points of a tiny v1 bottleneck network."""
    bottleneck = resnet_v1.bottleneck
    blocks = [
        resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
        resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])
    ]
    inputs = create_test_input(2, 32, 16, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      _, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
    expected = [
        'tiny/block1/unit_1/bottleneck_v1/shortcut',
        'tiny/block1/unit_1/bottleneck_v1/shortcut/BatchNorm',
        'tiny/block1/unit_1/bottleneck_v1/conv1',
        'tiny/block1/unit_1/bottleneck_v1/conv2',
        'tiny/block1/unit_1/bottleneck_v1/conv3',
        'tiny/block1/unit_1/bottleneck_v1/conv3/BatchNorm',
        'tiny/block1/unit_2/bottleneck_v1/conv1',
        'tiny/block1/unit_2/bottleneck_v1/conv2',
        'tiny/block1/unit_2/bottleneck_v1/conv3',
        'tiny/block1/unit_2/bottleneck_v1/conv3/BatchNorm',
        'tiny/block2/unit_1/bottleneck_v1/shortcut',
        'tiny/block2/unit_1/bottleneck_v1/shortcut/BatchNorm',
        'tiny/block2/unit_1/bottleneck_v1/conv1',
        'tiny/block2/unit_1/bottleneck_v1/conv2',
        'tiny/block2/unit_1/bottleneck_v1/conv3',
        'tiny/block2/unit_1/bottleneck_v1/conv3/BatchNorm',
        'tiny/block2/unit_2/bottleneck_v1/conv1',
        'tiny/block2/unit_2/bottleneck_v1/conv2',
        'tiny/block2/unit_2/bottleneck_v1/conv3',
        'tiny/block2/unit_2/bottleneck_v1/conv3/BatchNorm'
    ]
    self.assertItemsEqual(expected, end_points) 
Example #21
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testFullyConvolutionalUnknownHeightWidth(self):
    batch = 2
    height, width = 65, 65
    global_pool = False
    inputs = create_test_input(batch, None, None, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      output, _ = self._resnet_small(inputs, None, global_pool)
    self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      output = sess.run(output, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 3, 3, 32)) 
Example #22
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _resnet_plain(self, inputs, blocks, output_stride=None, scope=None):
    """A plain ResNet without extra layers before or after the ResNet blocks."""
    with variable_scope.variable_scope(scope, values=[inputs]):
      with arg_scope([layers.conv2d], outputs_collections='end_points'):
        net = resnet_utils.stack_blocks_dense(inputs, blocks, output_stride)
        end_points = utils.convert_collection_to_dict('end_points')
        return net, end_points 
Example #23
Source File: inception_v3_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 299, 299
    inputs = random_ops.random_uniform((batch_size, height, width, 3))
    with arg_scope(inception_v3.inception_v3_arg_scope()):
      inception_v3.inception_v3_base(inputs)
    total_params, _ = model_analyzer.analyze_vars(
        variables_lib.get_model_variables())
    self.assertAlmostEqual(21802784, total_params) 
Example #24
Source File: encoder_resnet.py    From conv-ensemble-str with Apache License 2.0 5 votes vote down vote up
def __call__(self, features):
    """ Define tf graph.
    """
    inputs = features['image']

    with tf.variable_scope('encoder') as vsc:
      with slim.arg_scope(resnet_v2.resnet_arg_scope()):
        # conv1
        with arg_scope(
            [layers_lib.conv2d], activation_fn=None, normalizer_fn=None):
          net = resnet_utils.conv2d_same(inputs, 16, 5, stride=2, scope='conv1')
        tf.add_to_collection(vsc.original_name_scope, net)

        # resnet blocks
        blocks = []
        for i in range(len(self.encoder_params['block_name'])):
          block = resnet_v2.resnet_v2_block(
              scope=self.encoder_params['block_name'][i],
              base_depth=self.encoder_params['base_depth'][i],
              num_units=self.encoder_params['num_units'][i],
              stride=self.encoder_params['stride'][i])
          blocks.append(block)
        net, _ = resnet_v2.resnet_v2(
            net,
            blocks,
            is_training=(self.mode == ModeKeys.TRAIN),
            global_pool=False,
            output_stride=2,
            include_root_block=False,
            scope='resnet')

        tf.add_to_collection(vsc.original_name_scope, net)
    return net 
Example #25
Source File: layers.py    From iaf with MIT License 5 votes vote down vote up
def ar_multiconv2d(name, x, context, n_h, n_out, nl=tf.nn.elu, **_):
    with tf.variable_scope(name), arg_scope([ar_conv2d]):
        for i, size in enumerate(n_h):
            x = ar_conv2d("layer_%d" % i, x, size, zerodiagonal=False)
            if i == 0:
                x += context
            x = nl(x)
        return [ar_conv2d("layer_out_%d" % i, x, size, zerodiagonal=True) for i, size in enumerate(n_out)] 
Example #26
Source File: layers.py    From iaf with MIT License 5 votes vote down vote up
def ar_conv2d(name, x, num_filters, filter_size=(3, 3), stride=(1, 1), pad="SAME", init_scale=1.,
              zerodiagonal=True, **_):
    h = filter_size[0]
    w = filter_size[1]
    n_in = int(x.get_shape()[1])
    n_out = num_filters

    mask = tf.constant(get_conv_ar_mask(h, w, n_in, n_out, zerodiagonal))
    with arg_scope([conv2d]):
        return conv2d(name, x, num_filters, filter_size, stride, pad, init_scale, mask=mask)


# Auto-Regressive convnet with l2 normalization 
Example #27
Source File: inception_v1_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testModelHasExpectedNumberOfParameters(self):
    batch_size = 5
    height, width = 224, 224
    inputs = random_ops.random_uniform((batch_size, height, width, 3))
    with arg_scope(inception_v1.inception_v1_arg_scope()):
      inception_v1.inception_v1_base(inputs)
    total_params, _ = model_analyzer.analyze_vars(
        variables_lib.get_model_variables())
    self.assertAlmostEqual(5607184, total_params) 
Example #28
Source File: alexnet.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def alexnet_v2_arg_scope(weight_decay=0.0005):
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      biases_initializer=init_ops.constant_initializer(0.1),
      weights_regularizer=regularizers.l2_regularizer(weight_decay)):
    with arg_scope([layers.conv2d], padding='SAME'):
      with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc 
Example #29
Source File: resnet_v1_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testAtrousFullyConvolutionalUnknownHeightWidth(self):
    batch = 2
    height, width = 65, 65
    global_pool = False
    output_stride = 8
    inputs = create_test_input(batch, None, None, 3)
    with arg_scope(resnet_utils.resnet_arg_scope()):
      output, _ = self._resnet_small(
          inputs, None, global_pool, output_stride=output_stride)
    self.assertListEqual(output.get_shape().as_list(), [batch, None, None, 32])
    images = create_test_input(batch, height, width, 3)
    with self.test_session() as sess:
      sess.run(variables.global_variables_initializer())
      output = sess.run(output, {inputs: images.eval()})
      self.assertEqual(output.shape, (batch, 9, 9, 32)) 
Example #30
Source File: overfeat.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def overfeat_arg_scope(weight_decay=0.0005):
  with arg_scope(
      [layers.conv2d, layers_lib.fully_connected],
      activation_fn=nn_ops.relu,
      weights_regularizer=regularizers.l2_regularizer(weight_decay),
      biases_initializer=init_ops.zeros_initializer()):
    with arg_scope([layers.conv2d], padding='SAME'):
      with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc