Python tensorflow.python.training.training_ops.resource_apply_adam() Examples
The following are 9
code examples of tensorflow.python.training.training_ops.resource_apply_adam().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.training.training_ops
, or try the search function
.
Example #1
Source File: optimizer.py From tensorflow-XNN with MIT License | 6 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking, use_nesterov=True) # keras Nadam update rule
Example #2
Source File: multistep_with_adamoptimizer.py From tensor2tensor with Apache License 2.0 | 6 votes |
def _resource_apply_dense_in_action(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") beta1_power, beta2_power = self._get_beta_accumulators() return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, tf.cast(beta1_power, grad.dtype.base_dtype), tf.cast(beta2_power, grad.dtype.base_dtype), tf.cast(self._lr_t, var.dtype.base_dtype), tf.cast(self._beta1_t, grad.dtype.base_dtype), tf.cast(self._beta2_t, grad.dtype.base_dtype), tf.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking)
Example #3
Source File: optimizer.py From BERT with Apache License 2.0 | 6 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking, use_nesterov=True) # keras Nadam update rule
Example #4
Source File: nadam.py From BERT with Apache License 2.0 | 6 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking, use_nesterov=True) # keras Nadam update rule
Example #5
Source File: optimizer.py From tensorflow-DSMM with MIT License | 6 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking, use_nesterov=True) # keras Nadam update rule
Example #6
Source File: nadam.py From tensorflow-DSMM with MIT License | 6 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking, use_nesterov=True) # keras Nadam update rule
Example #7
Source File: adam.py From lambda-packs with MIT License | 5 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking)
Example #8
Source File: nadam_optimizer.py From lambda-packs with MIT License | 5 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking, use_nesterov=True)
Example #9
Source File: adam.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _resource_apply_dense(self, grad, var): m = self.get_slot(var, "m") v = self.get_slot(var, "v") return training_ops.resource_apply_adam( var.handle, m.handle, v.handle, math_ops.cast(self._beta1_power, grad.dtype.base_dtype), math_ops.cast(self._beta2_power, grad.dtype.base_dtype), math_ops.cast(self._lr_t, grad.dtype.base_dtype), math_ops.cast(self._beta1_t, grad.dtype.base_dtype), math_ops.cast(self._beta2_t, grad.dtype.base_dtype), math_ops.cast(self._epsilon_t, grad.dtype.base_dtype), grad, use_locking=self._use_locking)