Python sklearn.kernel_approximation.Nystroem() Examples
The following are 29
code examples of sklearn.kernel_approximation.Nystroem().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.kernel_approximation
, or try the search function
.
Example #1
Source File: test_kernel_approximation.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_nystroem_default_parameters(): rnd = np.random.RandomState(42) X = rnd.uniform(size=(10, 4)) # rbf kernel should behave as gamma=None by default # aka gamma = 1 / n_features nystroem = Nystroem(n_components=10) X_transformed = nystroem.fit_transform(X) K = rbf_kernel(X, gamma=None) K2 = np.dot(X_transformed, X_transformed.T) assert_array_almost_equal(K, K2) # chi2 kernel should behave as gamma=1 by default nystroem = Nystroem(kernel='chi2', n_components=10) X_transformed = nystroem.fit_transform(X) K = chi2_kernel(X, gamma=1) K2 = np.dot(X_transformed, X_transformed.T) assert_array_almost_equal(K, K2)
Example #2
Source File: test_kernel_approximation.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_nystroem_default_parameters(): rnd = np.random.RandomState(42) X = rnd.uniform(size=(10, 4)) # rbf kernel should behave as gamma=None by default # aka gamma = 1 / n_features nystroem = Nystroem(n_components=10) X_transformed = nystroem.fit_transform(X) K = rbf_kernel(X, gamma=None) K2 = np.dot(X_transformed, X_transformed.T) assert_array_almost_equal(K, K2) # chi2 kernel should behave as gamma=1 by default nystroem = Nystroem(kernel='chi2', n_components=10) X_transformed = nystroem.fit_transform(X) K = chi2_kernel(X, gamma=1) K2 = np.dot(X_transformed, X_transformed.T) assert_array_almost_equal(K, K2)
Example #3
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 6 votes |
def test_import_from_sklearn_pipeline_feature_union(self): from sklearn.pipeline import FeatureUnion from sklearn.decomposition import PCA from sklearn.kernel_approximation import Nystroem from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import make_pipeline union = FeatureUnion([("pca", PCA(n_components=1)), ("nys", Nystroem(n_components=2, random_state=42))]) sklearn_pipeline = make_pipeline(union, KNeighborsClassifier()) lale_pipeline = import_from_sklearn_pipeline(sklearn_pipeline) self.assertEqual(len(lale_pipeline.edges()), 3) from lale.lib.sklearn.pca import PCAImpl from lale.lib.sklearn.nystroem import NystroemImpl from lale.lib.lale.concat_features import ConcatFeaturesImpl from lale.lib.sklearn.k_neighbors_classifier import KNeighborsClassifierImpl self.assertEqual(lale_pipeline.edges()[0][0]._impl_class(), PCAImpl) self.assertEqual(lale_pipeline.edges()[0][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[1][0]._impl_class(), NystroemImpl) self.assertEqual(lale_pipeline.edges()[1][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[2][0]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[2][1]._impl_class(), KNeighborsClassifierImpl) self.assert_equal_predictions(sklearn_pipeline, lale_pipeline)
Example #4
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 6 votes |
def test_export_to_sklearn_pipeline3(self): from lale.lib.lale import ConcatFeatures from lale.lib.sklearn import PCA from lale.lib.sklearn import KNeighborsClassifier, LogisticRegression, SVC from sklearn.feature_selection import SelectKBest from lale.lib.sklearn import Nystroem from sklearn.pipeline import FeatureUnion lale_pipeline = ((PCA() >> SelectKBest(k=2)) & (Nystroem(random_state = 42) >> SelectKBest(k=3)) & (SelectKBest(k=3))) >> ConcatFeatures() >> SelectKBest(k=2) >> LogisticRegression() trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train) sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline() self.assertIsInstance(sklearn_pipeline.named_steps['featureunion'], FeatureUnion) self.assertIsInstance(sklearn_pipeline.named_steps['selectkbest'], SelectKBest) from sklearn.linear_model import LogisticRegression self.assertIsInstance(sklearn_pipeline.named_steps['logisticregression'], LogisticRegression) self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)
Example #5
Source File: test_kernel_approximation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2) def linear_kernel(X, Y): return np.dot(X, Y.T) # if degree, gamma or coef0 is passed, we raise a warning msg = "Passing gamma, coef0 or degree to Nystroem" params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2}) for param in params: ny = Nystroem(kernel=linear_kernel, **param) assert_warns_message(DeprecationWarning, msg, ny.fit, X)
Example #6
Source File: test_kernel_approximation.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel def linear_kernel(X, Y): return np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2))
Example #7
Source File: test_kernel_approximation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert_true(np.all(np.isfinite(Y)))
Example #8
Source File: test_kernel_approximation.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_nystroem_approximation(): # some basic tests rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 4)) # With n_components = n_samples this is exact X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X) K = rbf_kernel(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) trans = Nystroem(n_components=2, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test callable kernel def linear_kernel(X, Y): return np.dot(X, Y.T) trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2)) # test that available kernels fit and transform kernels_available = kernel_metrics() for kern in kernels_available: trans = Nystroem(n_components=2, kernel=kern, random_state=rnd) X_transformed = trans.fit(X).transform(X) assert_equal(X_transformed.shape, (X.shape[0], 2))
Example #9
Source File: test_kernel_approximation.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.kernel_approximation.AdditiveChi2Sampler, ka.AdditiveChi2Sampler) self.assertIs(df.kernel_approximation.Nystroem, ka.Nystroem) self.assertIs(df.kernel_approximation.RBFSampler, ka.RBFSampler) self.assertIs(df.kernel_approximation.SkewedChi2Sampler, ka.SkewedChi2Sampler)
Example #10
Source File: nystroem.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, kernel='rbf', gamma=None, coef0=None, degree=None, kernel_params=None, n_components=100, random_state=None): self._hyperparams = { 'kernel': kernel, 'gamma': gamma, 'coef0': coef0, 'degree': degree, 'kernel_params': kernel_params, 'n_components': n_components, 'random_state': random_state} self._wrapped_model = Op(**self._hyperparams)
Example #11
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_remove_last5(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier() pipeline.remove_last(inplace=True).freeze_trainable()
Example #12
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_remove_last4(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier() new_pipeline = pipeline.remove_last(inplace=True) self.assertEqual(len(new_pipeline._steps), 6) self.assertEqual(len(pipeline._steps), 6)
Example #13
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_remove_last2(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> (PassiveAggressiveClassifier() & LogisticRegression()) with self.assertRaises(ValueError): pipeline.remove_last()
Example #14
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_remove_last1(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier() new_pipeline = pipeline.remove_last() self.assertEqual(len(new_pipeline._steps), 6) self.assertEqual(len(pipeline._steps), 7)
Example #15
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_two_transformers(self): tfm1 = PCA() tfm2 = Nystroem() trainable = tfm1 >> tfm2 digits = sklearn.datasets.load_digits() trained = trainable.fit(digits.data, digits.target) predicted = trained.transform(digits.data)
Example #16
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_two_estimators_predict_proba1(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & PassiveAggressiveClassifier() )>>ConcatFeatures() >> NoOp() >> PassiveAggressiveClassifier() pipeline.fit(self.X_train, self.y_train) with self.assertRaises(ValueError): pipeline.predict_proba(self.X_test)
Example #17
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_two_estimators_predict_proba(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & LogisticRegression() )>>ConcatFeatures() >> NoOp() >> LogisticRegression() trained = pipeline.fit(self.X_train, self.y_train) trained.predict_proba(self.X_test)
Example #18
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_two_estimators_predict(self): pipeline = StandardScaler() >> ( PCA() & Nystroem() & LogisticRegression() )>>ConcatFeatures() >> NoOp() >> LogisticRegression() trained = pipeline.fit(self.X_train, self.y_train) trained.predict(self.X_test)
Example #19
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_export_to_sklearn_pipeline2(self): from lale.lib.lale import ConcatFeatures from lale.lib.sklearn import PCA from lale.lib.sklearn import KNeighborsClassifier from sklearn.feature_selection import SelectKBest from lale.lib.sklearn import Nystroem from sklearn.pipeline import FeatureUnion lale_pipeline = (((PCA(svd_solver='randomized', random_state=42) & SelectKBest(k=3)) >> ConcatFeatures()) & Nystroem(random_state=42)) >> ConcatFeatures() >> KNeighborsClassifier() trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train) sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline() self.assertIsInstance(sklearn_pipeline.named_steps['featureunion'], FeatureUnion) from sklearn.neighbors import KNeighborsClassifier self.assertIsInstance(sklearn_pipeline.named_steps['kneighborsclassifier'], KNeighborsClassifier) self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)
Example #20
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_import_from_sklearn_pipeline_nested_pipeline2(self): from sklearn.pipeline import FeatureUnion, make_pipeline from sklearn.decomposition import PCA from sklearn.kernel_approximation import Nystroem from sklearn.feature_selection import SelectKBest from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import make_pipeline union = FeatureUnion([("selectkbest_pca", make_pipeline(SelectKBest(k=3), make_pipeline(SelectKBest(k=2), PCA()))), ("nys", Nystroem(n_components=2, random_state=42))]) sklearn_pipeline = make_pipeline(union, KNeighborsClassifier()) lale_pipeline = import_from_sklearn_pipeline(sklearn_pipeline) self.assertEqual(len(lale_pipeline.edges()), 5) from lale.lib.sklearn.pca import PCAImpl from lale.lib.sklearn.nystroem import NystroemImpl from lale.lib.lale.concat_features import ConcatFeaturesImpl from lale.lib.sklearn.k_neighbors_classifier import KNeighborsClassifierImpl from lale.lib.sklearn.select_k_best import SelectKBestImpl self.assertEqual(lale_pipeline.edges()[0][0]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[0][1]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[1][0]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[1][1]._impl_class(), PCAImpl) self.assertEqual(lale_pipeline.edges()[2][0]._impl_class(), PCAImpl) self.assertEqual(lale_pipeline.edges()[2][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[3][0]._impl_class(), NystroemImpl) self.assertEqual(lale_pipeline.edges()[3][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[4][0]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[4][1]._impl_class(), KNeighborsClassifierImpl) self.assert_equal_predictions(sklearn_pipeline, lale_pipeline)
Example #21
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_import_from_sklearn_pipeline_nested_pipeline1(self): from sklearn.pipeline import FeatureUnion, make_pipeline from sklearn.decomposition import PCA from sklearn.kernel_approximation import Nystroem from sklearn.feature_selection import SelectKBest from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import make_pipeline union = FeatureUnion([("selectkbest_pca", make_pipeline(SelectKBest(k=3), FeatureUnion([('pca', PCA(n_components=1)), ('nested_pipeline', make_pipeline(SelectKBest(k=2), Nystroem()))]))), ("nys", Nystroem(n_components=2, random_state=42))]) sklearn_pipeline = make_pipeline(union, KNeighborsClassifier()) lale_pipeline = import_from_sklearn_pipeline(sklearn_pipeline) self.assertEqual(len(lale_pipeline.edges()), 8) #These assertions assume topological sort, which may not be unique. So the assertions are brittle. from lale.lib.sklearn.pca import PCAImpl from lale.lib.sklearn.nystroem import NystroemImpl from lale.lib.lale.concat_features import ConcatFeaturesImpl from lale.lib.sklearn.k_neighbors_classifier import KNeighborsClassifierImpl from lale.lib.sklearn.select_k_best import SelectKBestImpl self.assertEqual(lale_pipeline.edges()[0][0]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[0][1]._impl_class(), PCAImpl) self.assertEqual(lale_pipeline.edges()[1][0]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[1][1]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[2][0]._impl_class(), SelectKBestImpl) self.assertEqual(lale_pipeline.edges()[2][1]._impl_class(), NystroemImpl) self.assertEqual(lale_pipeline.edges()[3][0]._impl_class(), PCAImpl) self.assertEqual(lale_pipeline.edges()[3][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[4][0]._impl_class(), NystroemImpl) self.assertEqual(lale_pipeline.edges()[4][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[5][0]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[5][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[6][0]._impl_class(), NystroemImpl) self.assertEqual(lale_pipeline.edges()[6][1]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[7][0]._impl_class(), ConcatFeaturesImpl) self.assertEqual(lale_pipeline.edges()[7][1]._impl_class(), KNeighborsClassifierImpl) self.assert_equal_predictions(sklearn_pipeline, lale_pipeline)
Example #22
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_compose4(self): from lale.operators import make_choice digits = sklearn.datasets.load_digits() ohe = OneHotEncoder(handle_unknown=OneHotEncoder.handle_unknown.ignore) ohe.get_params() no_op = NoOp() pca = PCA() nys = Nystroem() lr = LogisticRegression() knn = KNeighborsClassifier() step1 = ohe | no_op step2 = pca | nys step3 = lr | knn model_plan = step1 >> step2 >> step3 #TODO: optimize on this plan and then fit and predict
Example #23
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_pca_nys_lr(self): from lale.operators import make_union nys = Nystroem(n_components=15) pca = PCA(n_components=10) lr = LogisticRegression(random_state=42) trainable = make_union(nys, pca) >> lr digits = sklearn.datasets.load_digits() trained = trainable.fit(digits.data, digits.target) predicted = trained.predict(digits.data)
Example #24
Source File: test_core_pipeline.py From lale with Apache License 2.0 | 5 votes |
def test_compose3(self): from lale.operators import make_pipeline nys = Nystroem(n_components=15) pca = PCA(n_components=10) lr = LogisticRegression(random_state=42) trainable = nys >> pca >> lr digits = sklearn.datasets.load_digits() trained = trainable.fit(digits.data, digits.target) predicted = trained.predict(digits.data)
Example #25
Source File: test_core_operators.py From lale with Apache License 2.0 | 5 votes |
def test_comparison_with_scikit(self): import warnings warnings.filterwarnings("ignore") from lale.lib.sklearn import PCA import sklearn.datasets from lale.helpers import cross_val_score pca = PCA(n_components=3, random_state=42, svd_solver='arpack') nys = Nystroem(n_components=10, random_state=42) concat = ConcatFeatures() lr = LogisticRegression(random_state=42, C=0.1) trainable = (pca & nys) >> concat >> lr digits = sklearn.datasets.load_digits() X, y = sklearn.utils.shuffle(digits.data, digits.target, random_state=42) cv_results = cross_val_score(trainable, X, y) cv_results = ['{0:.1%}'.format(score) for score in cv_results] from sklearn.pipeline import make_pipeline, FeatureUnion from sklearn.decomposition import PCA as SklearnPCA from sklearn.kernel_approximation import Nystroem as SklearnNystroem from sklearn.linear_model import LogisticRegression as SklearnLR from sklearn.model_selection import cross_val_score union = FeatureUnion([("pca", SklearnPCA(n_components=3, random_state=42, svd_solver='arpack')), ("nys", SklearnNystroem(n_components=10, random_state=42))]) lr = SklearnLR(random_state=42, C=0.1) pipeline = make_pipeline(union, lr) scikit_cv_results = cross_val_score(pipeline, X, y, cv = 5) scikit_cv_results = ['{0:.1%}'.format(score) for score in scikit_cv_results] self.assertEqual(cv_results, scikit_cv_results) warnings.resetwarnings()
Example #26
Source File: test_kernel_approximation.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_nystroem_callable(): # Test Nystroem on a callable. rnd = np.random.RandomState(42) n_samples = 10 X = rnd.uniform(size=(n_samples, 4)) def logging_histogram_kernel(x, y, log): """Histogram kernel that writes to a log.""" log.append(1) return np.minimum(x, y).sum() kernel_log = [] X = list(X) # test input validation Nystroem(kernel=logging_histogram_kernel, n_components=(n_samples - 1), kernel_params={'log': kernel_log}).fit(X) assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2) def linear_kernel(X, Y): return np.dot(X, Y.T) # if degree, gamma or coef0 is passed, we raise a warning msg = "Don't pass gamma, coef0 or degree to Nystroem" params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2}) for param in params: ny = Nystroem(kernel=linear_kernel, **param) with pytest.raises(ValueError, match=msg): ny.fit(X)
Example #27
Source File: test_kernel_approximation.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)
Example #28
Source File: test_kernel_approximation.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_nystroem_singular_kernel(): # test that nystroem works with singular kernel matrix rng = np.random.RandomState(0) X = rng.rand(10, 20) X = np.vstack([X] * 2) # duplicate samples gamma = 100 N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X) X_transformed = N.transform(X) K = rbf_kernel(X, gamma=gamma) assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T)) assert np.all(np.isfinite(Y))
Example #29
Source File: test_kernel_approximation.py From twitter-stock-recommendation with MIT License | 4 votes |
def test_nystroem_poly_kernel_params(): # Non-regression: Nystroem should pass other parameters beside gamma. rnd = np.random.RandomState(37) X = rnd.uniform(size=(10, 4)) K = polynomial_kernel(X, degree=3.1, coef0=.1) nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0], degree=3.1, coef0=.1) X_transformed = nystroem.fit_transform(X) assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)