Python tensorflow.python.ops.array_ops.matrix_transpose() Examples
The following are 30
code examples of tensorflow.python.ops.array_ops.matrix_transpose().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.array_ops
, or try the search function
.
Example #1
Source File: linalg_grad.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _CholeskyGrad(op, grad): """Gradient for Cholesky.""" # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1} l = op.outputs[0] num_rows = array_ops.shape(l)[-1] batch_shape = array_ops.shape(l)[:-2] l_inverse = linalg_ops.matrix_triangular_solve(l, linalg_ops.eye( num_rows, batch_shape=batch_shape, dtype=l.dtype)) middle = math_ops.matmul(l, grad, adjoint_a=True) middle = array_ops.matrix_set_diag(middle, 0.5 * array_ops.matrix_diag_part(middle)) middle = array_ops.matrix_band_part(middle, -1, 0) grad_a = math_ops.matmul( math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse) grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a)) return grad_a * 0.5
Example #2
Source File: operator_pd_identity.py From deep_image_model with Apache License 2.0 | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return x
Example #3
Source File: operator_pd_diag.py From keras-lambda with MIT License | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #4
Source File: operator_pd_diag.py From keras-lambda with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return math_ops.square(diag_mat) * x
Example #5
Source File: operator_pd_diag.py From keras-lambda with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #6
Source File: distribution_util.py From keras-lambda with MIT License | 5 votes |
def assert_symmetric(matrix): matrix_t = array_ops.matrix_transpose(matrix) return control_flow_ops.with_dependencies( [check_ops.assert_equal(matrix, matrix_t)], matrix)
Example #7
Source File: operator_pd_identity.py From keras-lambda with MIT License | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return math_ops.sqrt(self._scale) * x
Example #8
Source File: operator_pd_identity.py From keras-lambda with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return self._scale * x
Example #9
Source File: linalg_grad.py From keras-lambda with MIT License | 5 votes |
def _SelfAdjointEigV2Grad(op, grad_e, grad_v): """Gradient for SelfAdjointEigV2.""" e = op.outputs[0] v = op.outputs[1] # a = op.inputs[0], which satisfies # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i] with ops.control_dependencies([grad_e.op, grad_v.op]): if grad_v is not None: # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0). # Notice that because of the term involving f, the gradient becomes # infinite (or NaN in practice) when eigenvalues are not unique. # Mathematically this should not be surprising, since for (k-fold) # degenerate eigenvalues, the corresponding eigenvectors are only defined # up to arbitrary rotation in a (k-dimensional) subspace. f = array_ops.matrix_set_diag( math_ops.reciprocal( array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)), array_ops.zeros_like(e)) grad_a = math_ops.matmul( v, math_ops.matmul( array_ops.matrix_diag(grad_e) + f * math_ops.matmul( v, grad_v, adjoint_a=True), v, adjoint_b=True)) else: grad_a = math_ops.matmul( v, math_ops.matmul( array_ops.matrix_diag(grad_e), v, adjoint_b=True)) # The forward op only depends on the lower triangular part of a, so here we # symmetrize and take the lower triangle grad_a = array_ops.matrix_band_part( grad_a + array_ops.matrix_transpose(grad_a), -1, 0) grad_a = array_ops.matrix_set_diag(grad_a, 0.5 * array_ops.matrix_diag_part(grad_a)) return grad_a
Example #10
Source File: linalg_grad.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _SelfAdjointEigV2Grad(op, grad_e, grad_v): """Gradient for SelfAdjointEigV2.""" e = op.outputs[0] compute_v = op.get_attr("compute_v") # a = op.inputs[0], which satisfies # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i] with ops.control_dependencies([grad_e, grad_v]): if compute_v: v = op.outputs[1] # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0). # Notice that because of the term involving f, the gradient becomes # infinite (or NaN in practice) when eigenvalues are not unique. # Mathematically this should not be surprising, since for (k-fold) # degenerate eigenvalues, the corresponding eigenvectors are only defined # up to arbitrary rotation in a (k-dimensional) subspace. f = array_ops.matrix_set_diag( math_ops.reciprocal( array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)), array_ops.zeros_like(e)) grad_a = math_ops.matmul( v, math_ops.matmul( array_ops.matrix_diag(grad_e) + f * math_ops.matmul(v, grad_v, adjoint_a=True), v, adjoint_b=True)) else: _, v = linalg_ops.self_adjoint_eig(op.inputs[0]) grad_a = math_ops.matmul(v, math_ops.matmul( array_ops.matrix_diag(grad_e), v, adjoint_b=True)) # The forward op only depends on the lower triangular part of a, so here we # symmetrize and take the lower triangle grad_a = array_ops.matrix_band_part( grad_a + math_ops.conj(array_ops.matrix_transpose(grad_a)), -1, 0) grad_a = array_ops.matrix_set_diag(grad_a, 0.5 * array_ops.matrix_diag_part(grad_a)) return grad_a
Example #11
Source File: init_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype # Check the shape if len(shape) < 2: raise ValueError("The tensor to initialize must be " "at least two-dimensional") # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_cols, num_rows) if num_rows < num_cols else (num_rows, num_cols) # Generate a random matrix a = random_ops.random_normal(flat_shape, dtype=dtype, seed=self.seed) # Compute the qr factorization q, r = linalg_ops.qr(a, full_matrices=False) # Make Q uniform d = array_ops.diag_part(r) ph = d / math_ops.abs(d) q *= ph if num_rows < num_cols: q = array_ops.matrix_transpose(q) return self.gain * array_ops.reshape(q, shape)
Example #12
Source File: util.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def assert_symmetric(matrix): matrix_t = array_ops.matrix_transpose(matrix) return control_flow_ops.with_dependencies( [check_ops.assert_equal(matrix, matrix_t)], matrix)
Example #13
Source File: operator_pd_diag.py From deep_image_model with Apache License 2.0 | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #14
Source File: operator_pd_diag.py From deep_image_model with Apache License 2.0 | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return math_ops.sqrt(diag_mat) * x
Example #15
Source File: operator_pd_diag.py From deep_image_model with Apache License 2.0 | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #16
Source File: distribution_util.py From deep_image_model with Apache License 2.0 | 5 votes |
def assert_symmetric(matrix): matrix_t = array_ops.matrix_transpose(matrix) return control_flow_ops.with_dependencies( [check_ops.assert_equal(matrix, matrix_t)], matrix)
Example #17
Source File: util.py From lambda-packs with MIT License | 5 votes |
def assert_symmetric(matrix): matrix_t = array_ops.matrix_transpose(matrix) return control_flow_ops.with_dependencies( [check_ops.assert_equal(matrix, matrix_t)], matrix)
Example #18
Source File: linalg_grad.py From deep_image_model with Apache License 2.0 | 5 votes |
def _SelfAdjointEigV2Grad(op, grad_e, grad_v): """Gradient for SelfAdjointEigV2.""" e = op.outputs[0] v = op.outputs[1] # a = op.inputs[0], which satisfies # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i] with ops.control_dependencies([grad_e.op, grad_v.op]): if grad_v is not None: # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0). # Notice that because of the term involving f, the gradient becomes # infinite (or NaN in practice) when eigenvalues are not unique. # Mathematically this should not be surprising, since for (k-fold) # degenerate eigenvalues, the corresponding eigenvectors are only defined # up to arbitrary rotation in a (k-dimensional) subspace. f = array_ops.matrix_set_diag( math_ops.inv( array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)), array_ops.zeros_like(e)) grad_a = math_ops.batch_matmul( v, math_ops.batch_matmul( array_ops.matrix_diag(grad_e) + f * math_ops.batch_matmul( v, grad_v, adj_x=True), v, adj_y=True)) else: grad_a = math_ops.batch_matmul( v, math_ops.batch_matmul( array_ops.matrix_diag(grad_e), v, adj_y=True)) # The forward op only depends on the lower triangular part of a, so here we # symmetrize and take the lower triangle grad_a = array_ops.matrix_band_part( grad_a + array_ops.matrix_transpose(grad_a), -1, 0) grad_a = array_ops.matrix_set_diag(grad_a, 0.5 * array_ops.matrix_diag_part(grad_a)) return grad_a
Example #19
Source File: operator_pd_diag.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #20
Source File: operator_pd_diag.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return math_ops.square(diag_mat) * x
Example #21
Source File: operator_pd_diag.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #22
Source File: distribution_util.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def assert_symmetric(matrix): matrix_t = array_ops.matrix_transpose(matrix) return control_flow_ops.with_dependencies( [check_ops.assert_equal(matrix, matrix_t)], matrix)
Example #23
Source File: operator_pd_identity.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return math_ops.sqrt(self._scale) * x
Example #24
Source File: operator_pd_identity.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return self._scale * x
Example #25
Source File: linalg_grad.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _SelfAdjointEigV2Grad(op, grad_e, grad_v): """Gradient for SelfAdjointEigV2.""" e = op.outputs[0] v = op.outputs[1] # a = op.inputs[0], which satisfies # a[...,:,:] * v[...,:,i] = e[...,i] * v[...,i] with ops.control_dependencies([grad_e.op, grad_v.op]): if grad_v is not None: # Construct the matrix f(i,j) = (i != j ? 1 / (e_i - e_j) : 0). # Notice that because of the term involving f, the gradient becomes # infinite (or NaN in practice) when eigenvalues are not unique. # Mathematically this should not be surprising, since for (k-fold) # degenerate eigenvalues, the corresponding eigenvectors are only defined # up to arbitrary rotation in a (k-dimensional) subspace. f = array_ops.matrix_set_diag( math_ops.reciprocal( array_ops.expand_dims(e, -2) - array_ops.expand_dims(e, -1)), array_ops.zeros_like(e)) grad_a = math_ops.matmul( v, math_ops.matmul( array_ops.matrix_diag(grad_e) + f * math_ops.matmul( v, grad_v, adjoint_a=True), v, adjoint_b=True)) else: grad_a = math_ops.matmul( v, math_ops.matmul( array_ops.matrix_diag(grad_e), v, adjoint_b=True)) # The forward op only depends on the lower triangular part of a, so here we # symmetrize and take the lower triangle grad_a = array_ops.matrix_band_part( grad_a + array_ops.matrix_transpose(grad_a), -1, 0) grad_a = array_ops.matrix_set_diag(grad_a, 0.5 * array_ops.matrix_diag_part(grad_a)) return grad_a
Example #26
Source File: operator_pd_diag.py From lambda-packs with MIT License | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #27
Source File: operator_pd_diag.py From lambda-packs with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return math_ops.square(diag_mat) * x
Example #28
Source File: operator_pd_diag.py From lambda-packs with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) diag_mat = array_ops.expand_dims(self._diag, -1) return diag_mat * x
Example #29
Source File: operator_pd_identity.py From lambda-packs with MIT License | 5 votes |
def _batch_sqrt_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return math_ops.sqrt(self._scale) * x
Example #30
Source File: operator_pd_identity.py From lambda-packs with MIT License | 5 votes |
def _batch_matmul(self, x, transpose_x=False): if transpose_x: x = array_ops.matrix_transpose(x) self._check_x(x) return self._scale * x