Python tensorflow.python.ops.array_ops.shape_n() Examples
The following are 3
code examples of tensorflow.python.ops.array_ops.shape_n().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.array_ops
, or try the search function
.
Example #1
Source File: nn_grad.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _Conv2DGrad(op, grad): strides = op.get_attr("strides") padding = op.get_attr("padding") use_cudnn_on_gpu = op.get_attr("use_cudnn_on_gpu") data_format = op.get_attr("data_format") shape_0, shape_1 = array_ops.shape_n([op.inputs[0], op.inputs[1]]) return [nn_ops.conv2d_backprop_input(shape_0, op.inputs[1], grad, strides, padding, use_cudnn_on_gpu, data_format), nn_ops.conv2d_backprop_filter(op.inputs[0], shape_1, grad, strides, padding, use_cudnn_on_gpu, data_format)]
Example #2
Source File: custom_ssim.py From MimickNet with Apache License 2.0 | 5 votes |
def _verify_compatible_image_shapes(img1, img2): """Checks if two image tensors are compatible for applying SSIM or PSNR. This function checks if two sets of images have ranks at least 3, and if the last three dimensions match. Args: img1: Tensor containing the first image batch. img2: Tensor containing the second image batch. Returns: A tuple containing: the first tensor shape, the second tensor shape, and a list of control_flow_ops.Assert() ops implementing the checks. Raises: ValueError: When static shape check fails. """ shape1 = img1.get_shape().with_rank_at_least(3) shape2 = img2.get_shape().with_rank_at_least(3) shape1[-3:].assert_is_compatible_with(shape2[-3:]) if shape1.ndims is not None and shape2.ndims is not None: for dim1, dim2 in zip(reversed(shape1.dims[:-3]), reversed(shape2.dims[:-3])): if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)): raise ValueError('Two images are not compatible: %s and %s' % (shape1, shape2)) shape1, shape2 = array_ops.shape_n([img1, img2]) checks = [] checks.append(control_flow_ops.Assert( math_ops.greater_equal(array_ops.size(shape1), 3), [shape1, shape2], summarize=10)) checks.append(control_flow_ops.Assert( math_ops.reduce_all(math_ops.equal(shape1[-3:], shape2[-3:])), [shape1, shape2], summarize=10)) return shape1, shape2, checks
Example #3
Source File: custom_ssim.py From MimickNet with Apache License 2.0 | 5 votes |
def _ssim_per_channel(img1, img2, max_val=1.0): filter_size = constant_op.constant(11, dtype=dtypes.int32) filter_sigma = constant_op.constant(1.5, dtype=img1.dtype) shape1, shape2 = array_ops.shape_n([img1, img2]) checks = [ control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal( shape1[-3:-1], filter_size)), [shape1, filter_size], summarize=8), control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal( shape2[-3:-1], filter_size)), [shape2, filter_size], summarize=8)] # Enforce the check to run before computation. with ops.control_dependencies(checks): img1 = array_ops.identity(img1) kernel = _fspecial_gauss(filter_size, filter_sigma) kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1]) compensation = 1.0 def reducer(x): shape = array_ops.shape(x) x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0)) y = nn.depthwise_conv2d(x, kernel, strides=[1, 1, 1, 1], padding='VALID') return array_ops.reshape(y, array_ops.concat([shape[:-3], array_ops.shape(y)[1:]], 0)) luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation) # Average over the second and the third from the last: height, width. axes = constant_op.constant([-3, -2], dtype=dtypes.int32) ssim_val = math_ops.reduce_mean(luminance * cs, axes) cs = math_ops.reduce_mean(cs, axes) luminance = math_ops.reduce_mean(luminance, axes) return ssim_val, cs, luminance