Python tensorflow.python.ops.array_ops.sparse_placeholder() Examples
The following are 17
code examples of tensorflow.python.ops.array_ops.sparse_placeholder().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.array_ops
, or try the search function
.
Example #1
Source File: feature_column.py From keras-lambda with MIT License | 6 votes |
def make_place_holder_tensors_for_base_features(feature_columns): """Returns placeholder tensors for inference. Args: feature_columns: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn. Returns: A dict mapping feature keys to SparseTensors (sparse columns) or placeholder Tensors (dense columns). """ # Get dict mapping features to FixedLenFeature or VarLenFeature values. dict_for_parse_example = create_feature_spec_for_parsing(feature_columns) placeholders = {} for column_name, column_type in dict_for_parse_example.items(): if isinstance(column_type, parsing_ops.VarLenFeature): # Sparse placeholder for sparse tensors. placeholders[column_name] = array_ops.sparse_placeholder( column_type.dtype, name="Placeholder_{}".format(column_name)) else: # Simple placeholder for dense tensors. placeholders[column_name] = array_ops.placeholder( column_type.dtype, shape=(None, column_type.shape[0]), name="Placeholder_{}".format(column_name)) return placeholders
Example #2
Source File: feature_column.py From lambda-packs with MIT License | 6 votes |
def make_place_holder_tensors_for_base_features(feature_columns): """Returns placeholder tensors for inference. Args: feature_columns: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn. Returns: A dict mapping feature keys to SparseTensors (sparse columns) or placeholder Tensors (dense columns). """ # Get dict mapping features to FixedLenFeature or VarLenFeature values. dict_for_parse_example = create_feature_spec_for_parsing(feature_columns) placeholders = {} for column_name, column_type in dict_for_parse_example.items(): if isinstance(column_type, parsing_ops.VarLenFeature): # Sparse placeholder for sparse tensors. placeholders[column_name] = array_ops.sparse_placeholder( column_type.dtype, name="Placeholder_{}".format(column_name)) else: # Simple placeholder for dense tensors. placeholders[column_name] = array_ops.placeholder( column_type.dtype, shape=(None, column_type.shape[0]), name="Placeholder_{}".format(column_name)) return placeholders
Example #3
Source File: feature_column.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def make_place_holder_tensors_for_base_features(feature_columns): """Returns placeholder tensors for inference. Args: feature_columns: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn. Returns: A dict mapping feature keys to SparseTensors (sparse columns) or placeholder Tensors (dense columns). """ # Get dict mapping features to FixedLenFeature or VarLenFeature values. dict_for_parse_example = create_feature_spec_for_parsing(feature_columns) placeholders = {} for column_name, column_type in dict_for_parse_example.items(): if isinstance(column_type, parsing_ops.VarLenFeature): # Sparse placeholder for sparse tensors. placeholders[column_name] = array_ops.sparse_placeholder( column_type.dtype, name="Placeholder_{}".format(column_name)) else: # Simple placeholder for dense tensors. placeholders[column_name] = array_ops.placeholder( column_type.dtype, shape=(None, column_type.shape[0]), name="Placeholder_{}".format(column_name)) return placeholders
Example #4
Source File: linear_model_test.py From estimator with Apache License 2.0 | 6 votes |
def test_sparse_multi_rank(self): wire_cast = fc.categorical_column_with_hash_bucket('wire_cast', 4) with ops.Graph().as_default(): wire_tensor = array_ops.sparse_placeholder(dtypes.string) wire_value = sparse_tensor.SparseTensorValue( values=['omar', 'stringer', 'marlo', 'omar'], # hashed = [2, 0, 3, 2] indices=[[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 1]], dense_shape=[2, 2, 2]) features = {'wire_cast': wire_tensor} model = linear.LinearModel([wire_cast]) predictions = model(features) wire_cast_var, _ = model.variables with _initialized_session() as sess: self.assertAllClose(np.zeros((4, 1)), self.evaluate(wire_cast_var)) self.assertAllClose( np.zeros((2, 1)), predictions.eval(feed_dict={wire_tensor: wire_value})) sess.run(wire_cast_var.assign([[10.], [100.], [1000.], [10000.]])) self.assertAllClose( [[1010.], [11000.]], predictions.eval(feed_dict={wire_tensor: wire_value}))
Example #5
Source File: feature_column.py From deep_image_model with Apache License 2.0 | 6 votes |
def make_place_holder_tensors_for_base_features(feature_columns): """Returns placeholder tensors for inference. Args: feature_columns: An iterable containing all the feature columns. All items should be instances of classes derived from _FeatureColumn. Returns: A dict mapping feature keys to SparseTensors (sparse columns) or placeholder Tensors (dense columns). """ # Get dict mapping features to FixedLenFeature or VarLenFeature values. dict_for_parse_example = create_feature_spec_for_parsing(feature_columns) placeholders = {} for column_name, column_type in dict_for_parse_example.items(): if isinstance(column_type, parsing_ops.VarLenFeature): # Sparse placeholder for sparse tensors. placeholders[column_name] = array_ops.sparse_placeholder( column_type.dtype, name="Placeholder_{}".format(column_name)) else: # Simple placeholder for dense tensors. placeholders[column_name] = array_ops.placeholder( column_type.dtype, shape=(None, column_type.shape[0]), name="Placeholder_{}".format(column_name)) return placeholders
Example #6
Source File: session_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testFeedSparsePlaceholderConstantShape(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = array_ops.sparse_placeholder(dtype=np.float32, shape=shape, name='placeholder1') self.assertAllEqual(sp.shape.eval(session=s), shape) self.assertAllEqual(tensor_util.constant_value(sp.shape), shape) sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape)
Example #7
Source File: session_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFeedSparsePlaceholderPartialShape(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = array_ops.sparse_placeholder( shape=[None, 9, 2], dtype=np.float32, name='placeholder1') sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.shape) sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue, fetch SparseTensorValue sp2_out = s.run( sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(sp2_out.indices, indices) self.assertAllEqual(sp2_out.values, values) self.assertAllEqual(sp2_out.shape, shape)
Example #8
Source File: tensor_signature.py From keras-lambda with MIT License | 5 votes |
def get_placeholder(self): if self.is_sparse: return array_ops.sparse_placeholder(dtype=self.dtype) return array_ops.placeholder(dtype=self.dtype, shape=[None] + list(self.shape[1:]))
Example #9
Source File: backend.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None): """Instantiates a placeholder tensor and returns it. Arguments: shape: Shape of the placeholder (integer tuple, may include `None` entries). ndim: Number of axes of the tensor. At least one of {`shape`, `ndim`} must be specified. If both are specified, `shape` is used. dtype: Placeholder type. sparse: Boolean, whether the placeholder should have a sparse type. name: Optional name string for the placeholder. Returns: Tensor instance (with Keras metadata included). Examples: ```python >>> from keras import backend as K >>> input_ph = K.placeholder(shape=(2, 4, 5)) >>> input_ph <tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32> ``` """ if dtype is None: dtype = floatx() if not shape: if ndim: shape = tuple([None for _ in range(ndim)]) if sparse: x = array_ops.sparse_placeholder(dtype, shape=shape, name=name) else: x = array_ops.placeholder(dtype, shape=shape, name=name) x._uses_learning_phase = False return x
Example #10
Source File: backend.py From lambda-packs with MIT License | 5 votes |
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None): """Instantiates a placeholder tensor and returns it. Arguments: shape: Shape of the placeholder (integer tuple, may include `None` entries). ndim: Number of axes of the tensor. At least one of {`shape`, `ndim`} must be specified. If both are specified, `shape` is used. dtype: Placeholder type. sparse: Boolean, whether the placeholder should have a sparse type. name: Optional name string for the placeholder. Returns: Tensor instance (with Keras metadata included). Examples: ```python >>> from keras import backend as K >>> input_ph = K.placeholder(shape=(2, 4, 5)) >>> input_ph <tf.Tensor 'Placeholder_4:0' shape=(2, 4, 5) dtype=float32> ``` """ if dtype is None: dtype = floatx() if not shape: if ndim: shape = tuple([None for _ in range(ndim)]) if sparse: x = array_ops.sparse_placeholder(dtype, shape=shape, name=name) else: x = array_ops.placeholder(dtype, shape=shape, name=name) x._uses_learning_phase = False return x
Example #11
Source File: session_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFeedSparsePlaceholder(self): with session.Session() as s: indices = np.array([[3, 2, 0], [4, 5, 1]]).astype(np.int64) values = np.array([1.0, 2.0]).astype(np.float32) shape = np.array([7, 9, 2]).astype(np.int64) sp = array_ops.sparse_placeholder(dtype=np.float32, name='placeholder1') sp_indices = array_ops.identity(sp.indices) sp_values = array_ops.identity(sp.values) sp_shape = array_ops.identity(sp.shape) sp2 = sparse_tensor.SparseTensor(sp_indices, sp_values, sp_shape) # Feed with tuple indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: (indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue indices_out, values_out, shape_out = s.run( [sp_indices, sp_values, sp_shape], {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(indices_out, indices) self.assertAllEqual(values_out, values) self.assertAllEqual(shape_out, shape) # Feed with SparseTensorValue, fetch SparseTensorValue sp2_out = s.run( sp2, {sp: sparse_tensor.SparseTensorValue(indices, values, shape)}) self.assertAllEqual(sp2_out.indices, indices) self.assertAllEqual(sp2_out.values, values) self.assertAllEqual(sp2_out.shape, shape)
Example #12
Source File: sparse_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testInvalidDimensionSizeInputUnavailableInGraphConstruction(self): sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32) with self.test_session(use_gpu=False) as sess: new_shape = np.array([3, 7, 5], dtype=np.int64) out = sparse_ops.sparse_reset_shape(sp_input, new_shape) with self.assertRaisesOpError("x <= y did not hold element-wise"): sess.run(out, feed_dict={sp_input: self._SparseTensorValue_2x5x6()})
Example #13
Source File: sparse_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFeedInputUnavailableInGraphConstructionOk(self): with self.test_session(use_gpu=False) as sess: sp_input = array_ops.sparse_placeholder(dtype=dtypes.int32) new_shape = np.array([3, 6, 7], dtype=np.int64) sp_output = sparse_ops.sparse_reset_shape(sp_input, new_shape) output = sess.run(sp_output, feed_dict={sp_input: self._SparseTensorValue_2x5x6()}) self.assertAllEqual(output.indices, [[0, 0, 0], [0, 1, 0], [0, 1, 3], [1, 1, 4], [1, 3, 2], [1, 3, 3]]) self.assertAllEqual(output.values, [0, 10, 13, 14, 32, 33]) self.assertAllEqual(output.shape, [3, 6, 7])
Example #14
Source File: tensor_signature.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def get_placeholder(self): if self.is_sparse: return array_ops.sparse_placeholder(dtype=self.dtype) return array_ops.placeholder(dtype=self.dtype, shape=[None] + list(self.shape[1:]))
Example #15
Source File: tensor_signature.py From lambda-packs with MIT License | 5 votes |
def get_placeholder(self): if self.is_sparse: return array_ops.sparse_placeholder(dtype=self.dtype) return array_ops.placeholder(dtype=self.dtype, shape=[None] + list(self.shape[1:]))
Example #16
Source File: linear_model_test.py From estimator with Apache License 2.0 | 4 votes |
def test_with_1d_unknown_shape_sparse_tensor(self): price = fc.numeric_column('price') price_buckets = fc.bucketized_column( price, boundaries=[ 0., 10., 100., ]) body_style = fc.categorical_column_with_vocabulary_list( 'body-style', vocabulary_list=['hardtop', 'wagon', 'sedan']) country = fc.categorical_column_with_vocabulary_list( 'country', vocabulary_list=['US', 'JP', 'CA']) # Provides 1-dim tensor and dense tensor. features = { 'price': array_ops.placeholder(dtypes.float32), 'body-style': array_ops.sparse_placeholder(dtypes.string), 'country': array_ops.placeholder(dtypes.string), } self.assertIsNone(features['price'].shape.ndims) self.assertIsNone(features['body-style'].get_shape().ndims) price_data = np.array([-1., 12.]) body_style_data = sparse_tensor.SparseTensorValue( indices=((0,), (1,)), values=('sedan', 'hardtop'), dense_shape=(2,)) country_data = np.array(['US', 'CA']) model = linear.LinearModel([price_buckets, body_style, country]) net = model(features) body_style_var, _, price_buckets_var, bias = model.variables with _initialized_session() as sess: sess.run(price_buckets_var.assign([[10.], [100.], [1000.], [10000.]])) sess.run(body_style_var.assign([[-10.], [-100.], [-1000.]])) sess.run(bias.assign([5.])) self.assertAllClose([[10 - 1000 + 5.], [1000 - 10 + 5.]], sess.run( net, feed_dict={ features['price']: price_data, features['body-style']: body_style_data, features['country']: country_data }))
Example #17
Source File: base.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def __init__(self, input_shape=None, batch_size=None, dtype=dtypes.float32, input_tensor=None, sparse=False, name=None): if context.in_eager_mode(): raise RuntimeError('InputLayer not supported in Eager mode.') super(InputLayer, self).__init__(dtype=dtype, name=name) self.built = True self.sparse = sparse self.batch_size = batch_size if isinstance(input_shape, tensor_shape.TensorShape): input_shape = tuple(input_shape.as_list()) if input_tensor is None: if input_shape is not None: batch_input_shape = (batch_size,) + tuple(input_shape) else: batch_input_shape = None if sparse: input_tensor = array_ops.sparse_placeholder( shape=batch_input_shape, dtype=dtype, name=self.name) else: input_tensor = array_ops.placeholder( shape=batch_input_shape, dtype=dtype, name=self.name) # For compatibility with Keras API. self.is_placeholder = True self._batch_input_shape = batch_input_shape else: # For compatibility with Keras API. self.is_placeholder = False self._batch_input_shape = tuple(input_tensor.get_shape().as_list()) # Create an input node to add to self.outbound_node # and set output_tensors' _keras_history. input_tensor._keras_history = (self, 0, 0) # pylint: disable=protected-access Node( self, inbound_layers=[], node_indices=[], tensor_indices=[], input_tensors=[input_tensor], output_tensors=[input_tensor])