Python keras_preprocessing.image.img_to_array() Examples
The following are 4
code examples of keras_preprocessing.image.img_to_array().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras_preprocessing.image
, or try the search function
.

Example #1
Source File: run.py From Generative-Adversarial-Networks-Projects with MIT License | 6 votes |
def load_images(data_dir, image_paths, image_shape): images = None for i, image_path in enumerate(image_paths): print() try: # Load image loaded_image = image.load_img(os.path.join(data_dir, image_path), target_size=image_shape) # Convert PIL image to numpy ndarray loaded_image = image.img_to_array(loaded_image) # Add another dimension (Add batch dimension) loaded_image = np.expand_dims(loaded_image, axis=0) # Concatenate all images into one tensor if images is None: images = loaded_image else: images = np.concatenate([images, loaded_image], axis=0) except Exception as e: print("Error:", i, e) return images
Example #2
Source File: test_build.py From keras-efficientnets with MIT License | 5 votes |
def get_preds(model): size = model.input_shape[1] filename = os.path.join(os.path.dirname(__file__), 'data', '565727409_61693c5e14.jpg') batch = KE.preprocess_input(img_to_array(load_img( filename, target_size=(size, size)))) batch = np.expand_dims(batch, 0) pred = decode_predictions(model.predict(batch), backend=K, utils=utils) return pred
Example #3
Source File: image.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def img_to_array(img, data_format=None, dtype=None): if data_format is None: data_format = backend.image_data_format() if 'dtype' in inspect.getargspec(image.img_to_array).args: if dtype is None: dtype = backend.floatx() return image.img_to_array(img, data_format=data_format, dtype=dtype) return image.img_to_array(img, data_format=data_format)
Example #4
Source File: utils.py From deepxplore with MIT License | 5 votes |
def preprocess_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) input_img_data = image.img_to_array(img) input_img_data = np.expand_dims(input_img_data, axis=0) input_img_data = preprocess_input(input_img_data) # final input shape = (1,224,224,3) return input_img_data