Python cntk.minus() Examples
The following are 16
code examples of cntk.minus().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cntk
, or try the search function
.
Example #1
Source File: cntk_smoothL1_loss.py From cntk-python-web-service-on-azure with MIT License | 6 votes |
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights): """ From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ sigma2 = sigma * sigma inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets))) smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2) smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2) smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2) smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign), C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign))) return C.element_times(bbox_outside_weights, smooth_l1_result)
Example #2
Source File: cntk_backend.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #3
Source File: cntk_smoothL1_loss.py From raster-deep-learning with Apache License 2.0 | 6 votes |
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights): """ From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ sigma2 = sigma * sigma inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets))) smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2) smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2) smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2) smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign), C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign))) return C.element_times(bbox_outside_weights, smooth_l1_result)
Example #4
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #5
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #6
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #7
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #8
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #9
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #10
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #11
Source File: cntk_smoothL1_loss.py From cntk-hotel-pictures-classificator with MIT License | 6 votes |
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights): """ From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ sigma2 = sigma * sigma inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets))) smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2) smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2) smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2) smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign), C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign))) return C.element_times(bbox_outside_weights, smooth_l1_result)
Example #12
Source File: cntk_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #13
Source File: cntk_backend.py From keras-lambda with MIT License | 6 votes |
def _moments(x, axes=None, shift=None, keep_dims=False): _axes = tuple(axes) if shift is None: shift = x # Compute true mean while keeping the dims for proper broadcasting. for axis in _axes: shift = C.reduce_mean(shift, axis=axis) shift = C.stop_gradient(shift) shifted_mean = C.minus(x, shift) for axis in _axes: shifted_mean = C.reduce_mean(shifted_mean, axis=axis) variance_mean = C.square(C.minus(x, shift)) for axis in _axes: variance_mean = C.reduce_mean(variance_mean, axis=axis) variance = C.minus(variance_mean, C.square(shifted_mean)) mean = C.plus(shifted_mean, shift) if not keep_dims: mean = squeeze(mean, _axes) variance = squeeze(variance, _axes) return mean, variance
Example #14
Source File: test_ops_binary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_minus_1(): cntk_op = C.minus([1, 2, 3], [4, 5, 6]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equal(cntk_ret, ng_ret)
Example #15
Source File: test_ops_binary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_minus_2(): cntk_op = C.minus([[1, 2, 3], [4, 5, 6]], [7, 8, 9]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equal(cntk_ret, ng_ret)
Example #16
Source File: test_ops_binary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_minus_3(): cntk_op = C.minus([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equal(cntk_ret, ng_ret)