Python cntk.softmax() Examples
The following are 15
code examples of cntk.softmax().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cntk
, or try the search function
.
Example #1
Source File: image_recon.py From dnn-model-services with MIT License | 6 votes |
def eval_single_image(loaded_model, image_path, image_dims): # Load and format image (resize, RGB -> BGR, CHW -> HWC) try: img = Image.open(image_path) if image_path.endswith("png"): temp = Image.new("RGB", img.size, (255, 255, 255)) temp.paste(img, img) img = temp resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS) bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]] hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2)) # Compute model output arguments = {loaded_model.arguments[0]: [hwc_format]} output = loaded_model.eval(arguments) # Return softmax probabilities sm = cntk.softmax(output[0]) return sm.eval() except FileNotFoundError: log.error("Could not open (skipping file): ", image_path) return ["None"]
Example #2
Source File: layers.py From keras-text with MIT License | 6 votes |
def _softmax(x, dim): """Computes softmax along a specified dim. Keras currently lacks this feature. """ if K.backend() == 'tensorflow': import tensorflow as tf return tf.nn.softmax(x, dim) elif K.backend() is 'cntk': import cntk return cntk.softmax(x, dim) elif K.backend() == 'theano': # Theano cannot softmax along an arbitrary dim. # So, we will shuffle `dim` to -1 and un-shuffle after softmax. perm = np.arange(K.ndim(x)) perm[dim], perm[-1] = perm[-1], perm[dim] x_perm = K.permute_dimensions(x, perm) output = K.softmax(x_perm) # Permute back perm[dim], perm[-1] = perm[-1], perm[dim] output = K.permute_dimensions(x, output) return output else: raise ValueError("Backend '{}' not supported".format(K.backend()))
Example #3
Source File: test_ops_unary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_softmax(): assert_cntk_ngraph_isclose(C.softmax([[1, 1, 2, 3]])) assert_cntk_ngraph_isclose(C.softmax([1, 1])) assert_cntk_ngraph_isclose(C.softmax([[[1, 1], [3, 5]]], axis=-1)) # This test is failing, bug must be fixed: # assert_cntk_ngraph_isclose(C.softmax([[[1, 1], [3, 5]]], axis=1))
Example #4
Source File: cntk_backend.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #5
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #6
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #7
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #8
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #9
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #10
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #11
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def softmax(x, axis=-1): return C.softmax(x, axis=axis)
Example #12
Source File: cntk_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def softmax(x): return C.softmax(x)
Example #13
Source File: models_setup.py From dnn-model-services with MIT License | 5 votes |
def eval_single_image(loaded_model, image_path, image_dims): # Load and format image (resize, RGB -> BGR, CHW -> HWC) try: img = Image.open(image_path) if image_path.endswith("png"): temp = Image.new("RGB", img.size, (255, 255, 255)) temp.paste(img, img) img = temp resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS) bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]] hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2)) # compute model output arguments = {loaded_model.arguments[0]: [hwc_format]} output = loaded_model.eval(arguments) # return softmax probabilities sm = cntk.softmax(output[0]) return sm.eval() except FileNotFoundError: print("Could not open (skipping file): ", image_path) return ["None"] # Evaluates an image set using the provided model
Example #14
Source File: models_setup.py From dnn-model-services with MIT License | 5 votes |
def eval_single_image_imagenet(opt_model, loaded_model, image_path, image_dims): img = Image.open(image_path) if image_path.endswith("png"): temp = Image.new("RGB", img.size, (255, 255, 255)) temp.paste(img, img) img = temp resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS) bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]] hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2)) if "VGG" in opt_model: arguments = {loaded_model.arguments[0]: [hwc_format]} output = loaded_model.eval(arguments) sm = cntk.softmax(output[0]) return sm.eval() elif "InceptionV3" in opt_model: z = cntk.as_composite(loaded_model[0].owner) output = z.eval({z.arguments[0]: [hwc_format]}) else: z = cntk.as_composite(loaded_model[3].owner) output = z.eval({z.arguments[0]: [hwc_format]}) predictions = np.squeeze(output) return predictions
Example #15
Source File: cntk_backend.py From keras-lambda with MIT License | 5 votes |
def softmax(x): return C.softmax(x)