Python cntk.softmax() Examples

The following are 15 code examples of cntk.softmax(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cntk , or try the search function .
Example #1
Source File: image_recon.py    From dnn-model-services with MIT License 6 votes vote down vote up
def eval_single_image(loaded_model, image_path, image_dims):
    # Load and format image (resize, RGB -> BGR, CHW -> HWC)
    try:
        img = Image.open(image_path)

        if image_path.endswith("png"):
            temp = Image.new("RGB", img.size, (255, 255, 255))
            temp.paste(img, img)
            img = temp
        resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS)
        bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]]
        hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2))

        # Compute model output
        arguments = {loaded_model.arguments[0]: [hwc_format]}
        output = loaded_model.eval(arguments)

        # Return softmax probabilities
        sm = cntk.softmax(output[0])
        return sm.eval()

    except FileNotFoundError:
        log.error("Could not open (skipping file): ", image_path)
        return ["None"] 
Example #2
Source File: layers.py    From keras-text with MIT License 6 votes vote down vote up
def _softmax(x, dim):
    """Computes softmax along a specified dim. Keras currently lacks this feature.
    """

    if K.backend() == 'tensorflow':
        import tensorflow as tf
        return tf.nn.softmax(x, dim)
    elif K.backend() is 'cntk':
        import cntk
        return cntk.softmax(x, dim)
    elif K.backend() == 'theano':
        # Theano cannot softmax along an arbitrary dim.
        # So, we will shuffle `dim` to -1 and un-shuffle after softmax.
        perm = np.arange(K.ndim(x))
        perm[dim], perm[-1] = perm[-1], perm[dim]
        x_perm = K.permute_dimensions(x, perm)
        output = K.softmax(x_perm)

        # Permute back
        perm[dim], perm[-1] = perm[-1], perm[dim]
        output = K.permute_dimensions(x, output)
        return output
    else:
        raise ValueError("Backend '{}' not supported".format(K.backend())) 
Example #3
Source File: test_ops_unary.py    From ngraph-python with Apache License 2.0 5 votes vote down vote up
def test_softmax():
    assert_cntk_ngraph_isclose(C.softmax([[1, 1, 2, 3]]))
    assert_cntk_ngraph_isclose(C.softmax([1, 1]))
    assert_cntk_ngraph_isclose(C.softmax([[[1, 1], [3, 5]]], axis=-1))
    # This test is failing, bug must be fixed:
    # assert_cntk_ngraph_isclose(C.softmax([[[1, 1], [3, 5]]], axis=1)) 
Example #4
Source File: cntk_backend.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #5
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #6
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #7
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #8
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #9
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #10
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #11
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def softmax(x, axis=-1):
    return C.softmax(x, axis=axis) 
Example #12
Source File: cntk_backend.py    From deepQuest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def softmax(x):
    return C.softmax(x) 
Example #13
Source File: models_setup.py    From dnn-model-services with MIT License 5 votes vote down vote up
def eval_single_image(loaded_model, image_path, image_dims):
    # Load and format image (resize, RGB -> BGR, CHW -> HWC)
    try:
        img = Image.open(image_path)

        if image_path.endswith("png"):
            temp = Image.new("RGB", img.size, (255, 255, 255))
            temp.paste(img, img)
            img = temp
        resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS)
        bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]]
        hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2))

        # compute model output
        arguments = {loaded_model.arguments[0]: [hwc_format]}
        output = loaded_model.eval(arguments)

        # return softmax probabilities
        sm = cntk.softmax(output[0])

        return sm.eval()

    except FileNotFoundError:
        print("Could not open (skipping file): ", image_path)
        return ["None"]


# Evaluates an image set using the provided model 
Example #14
Source File: models_setup.py    From dnn-model-services with MIT License 5 votes vote down vote up
def eval_single_image_imagenet(opt_model, loaded_model, image_path, image_dims):
    img = Image.open(image_path)

    if image_path.endswith("png"):
        temp = Image.new("RGB", img.size, (255, 255, 255))
        temp.paste(img, img)
        img = temp
    resized = img.resize((image_dims[2], image_dims[1]), Image.ANTIALIAS)
    bgr_image = np.asarray(resized, dtype=np.float32)[..., [2, 1, 0]]
    hwc_format = np.ascontiguousarray(np.rollaxis(bgr_image, 2))

    if "VGG" in opt_model:
        arguments = {loaded_model.arguments[0]: [hwc_format]}
        output = loaded_model.eval(arguments)
        sm = cntk.softmax(output[0])
        return sm.eval()

    elif "InceptionV3" in opt_model:
        z = cntk.as_composite(loaded_model[0].owner)
        output = z.eval({z.arguments[0]: [hwc_format]})

    else:
        z = cntk.as_composite(loaded_model[3].owner)
        output = z.eval({z.arguments[0]: [hwc_format]})

    predictions = np.squeeze(output)
    return predictions 
Example #15
Source File: cntk_backend.py    From keras-lambda with MIT License 5 votes vote down vote up
def softmax(x):
    return C.softmax(x)