Python cntk.__version__() Examples
The following are 11
code examples of cntk.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cntk
, or try the search function
.
Example #1
Source File: deploymain.py From MachineLearningSamples-ImageClassificationUsingCntk with MIT License | 5 votes |
def init(): try: print("Executing init() method...") print("Python version: " + str(sys.version) + ", CNTK version: " + cntk.__version__) except Exception as e: print("Exception in init:") print(str(e)) ################ # Main ################
Example #2
Source File: cntk_backend.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #3
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #4
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #5
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #6
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #7
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #8
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #9
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] # for hot fix, ignore all the . except the first one. if len(version) > 2 and version[1] == '.': version = version[:2] + version[2:].replace('.', '') try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #10
Source File: cntk_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _get_cntk_version(): version = C.__version__ if version.endswith('+'): version = version[:-1] try: return float(version) except: warnings.warn( 'CNTK backend warning: CNTK version not detected. ' 'Will using CNTK 2.0 GA as default.') return float(2.0)
Example #11
Source File: deploymain.py From MachineLearningSamples-ImageClassificationUsingCntk with MIT License | 4 votes |
def run(input_df): try: print("Python version: " + str(sys.version) + ", CNTK version: " + cntk.__version__) startTime = dt.datetime.now() print(str(input_df)) # convert input back to image and save to disk base64ImgString = input_df['image base64 string'][0] print(base64ImgString) pil_img = base64ToPilImg(base64ImgString) print("pil_img.size: " + str(pil_img.size)) pil_img.save(imgPath, "JPEG") print("Save pil_img to: " + imgPath) # Load model (once then keep in memory) print("Classifier = " + classifier) makeDirectory(workingDir) if not os.path.exists(cntkRefinedModelPath): raise Exception("Model file {} does not exist, likely because the {} classifier has not been trained yet.".format(cntkRefinedModelPath, classifier)) if not ('model' in vars() or 'model' in globals()): model = load_model(cntkRefinedModelPath) lutId2Label = readPickle(lutId2LabelPath) # Run DNN printDeviceType() node = getModelNode(classifier) mapPath = pathJoin(workingDir, "rundnn_map.txt") dnnOutput = runCntkModelImagePaths(model, [imgPath], mapPath, node, run_mbSize) # Predicted labels and scores scoresMatrix = runClassifierOnImagePaths(classifier, dnnOutput, svmPath, svm_boL2Normalize) scores = scoresMatrix[0] predScore = np.max(scores) predLabel = lutId2Label[np.argmax(scores)] print("Image predicted to be '{}' with score {}.".format(predLabel, predScore)) # Create json-encoded string of the model output executionTimeMs = (dt.datetime.now() - startTime).microseconds / 1000 outDict = {"label": str(predLabel), "score": str(predScore), "allScores": str(scores), "Id2Labels": str(lutId2Label), "executionTimeMs": str(executionTimeMs)} outJsonString = json.dumps(outDict) print("Json-encoded detections: " + outJsonString[:120] + "...") print("DONE.") return(str(outJsonString)) except Exception as e: return(str(e)) # API initialization method