Python cntk.element_times() Examples
The following are 7
code examples of cntk.element_times().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cntk
, or try the search function
.
Example #1
Source File: cntk_smoothL1_loss.py From cntk-python-web-service-on-azure with MIT License | 6 votes |
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights): """ From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ sigma2 = sigma * sigma inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets))) smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2) smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2) smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2) smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign), C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign))) return C.element_times(bbox_outside_weights, smooth_l1_result)
Example #2
Source File: cntk_smoothL1_loss.py From raster-deep-learning with Apache License 2.0 | 6 votes |
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights): """ From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ sigma2 = sigma * sigma inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets))) smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2) smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2) smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2) smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign), C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign))) return C.element_times(bbox_outside_weights, smooth_l1_result)
Example #3
Source File: cntk_smoothL1_loss.py From cntk-hotel-pictures-classificator with MIT License | 6 votes |
def SmoothL1Loss(sigma, bbox_pred, bbox_targets, bbox_inside_weights, bbox_outside_weights): """ From https://github.com/smallcorgi/Faster-RCNN_TF/blob/master/lib/fast_rcnn/train.py ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets)) SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2 |x| - 0.5 / sigma^2, otherwise """ sigma2 = sigma * sigma inside_mul_abs = C.abs(C.element_times(bbox_inside_weights, C.minus(bbox_pred, bbox_targets))) smooth_l1_sign = C.less(inside_mul_abs, 1.0 / sigma2) smooth_l1_option1 = C.element_times(C.element_times(inside_mul_abs, inside_mul_abs), 0.5 * sigma2) smooth_l1_option2 = C.minus(inside_mul_abs, 0.5 / sigma2) smooth_l1_result = C.plus(C.element_times(smooth_l1_option1, smooth_l1_sign), C.element_times(smooth_l1_option2, C.minus(1.0, smooth_l1_sign))) return C.element_times(bbox_outside_weights, smooth_l1_result)
Example #4
Source File: test_ops_binary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_element_times_1(): cntk_op = C.element_times([1, 2, 3], [4, 5, 6]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equal(cntk_ret, ng_ret)
Example #5
Source File: test_ops_binary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_element_times_2(): cntk_op = C.element_times([[1, 2, 3], [4, 5, 6]], [7, 8, 9]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equal(cntk_ret, ng_ret)
Example #6
Source File: test_ops_binary.py From ngraph-python with Apache License 2.0 | 5 votes |
def test_element_times_3(): cntk_op = C.element_times([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equal(cntk_ret, ng_ret)
Example #7
Source File: train_end2end.py From end2end_AU_speech with MIT License | 5 votes |
def std_normalized_l2_loss(output, target): std_inv = np.array([6.6864805402, 5.2904440280, 3.7165409939, 4.1421640454, 8.1537399389, 7.0312877415, 2.6712380967, 2.6372177876, 8.4253649884, 6.7482162880, 9.0849960354, 10.2624412692, 3.1325531319, 3.1091179819, 2.7337937590, 2.7336441031, 4.3542467871, 5.4896293687, 6.2003761588, 3.1290341469, 5.7677042738, 11.5460919611, 9.9926451700, 5.4259818848, 20.5060642486, 4.7692101480, 3.1681517575, 3.8582905289, 3.4222250436, 4.6828286809, 3.0070785113, 2.8936539301, 4.0649030157, 25.3068458731, 6.0030623160, 3.1151977458, 7.7773542649, 6.2057372469, 9.9494258692, 4.6865422850, 5.3300697628, 2.7722027974, 4.0658663003, 18.1101618617, 3.5390113731, 2.7794520068], dtype=np.float32) weights = C.constant(value=std_inv) #.reshape((1, label_dim))) dif = output - target ret = C.reduce_mean(C.square(C.element_times(dif, weights))) return ret