Python cntk.one_hot() Examples

The following are 30 code examples of cntk.one_hot(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cntk , or try the search function .
Example #1
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
Example #2
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #3
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #4
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
Example #5
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def sparse_categorical_crossentropy(target, output, from_logits=False):
    target = C.one_hot(target, output.shape[-1])
    target = C.reshape(target, output.shape)
    return categorical_crossentropy(target, output, from_logits) 
Example #6
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #7
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
Example #8
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def sparse_categorical_crossentropy(target, output, from_logits=False):
    target = C.one_hot(target, output.shape[-1])
    target = C.reshape(target, output.shape)
    return categorical_crossentropy(target, output, from_logits) 
Example #9
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #10
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #11
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
Example #12
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #13
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #14
Source File: cntk_backend.py    From deepQuest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will udpate with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_class = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_class)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
Example #15
Source File: cntk_backend.py    From deepQuest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def sparse_categorical_crossentropy(target, output, from_logits=False):
    target = C.one_hot(target, output.shape[-1])
    target = C.reshape(target, output.shape)
    return categorical_crossentropy(target, output, from_logits) 
Example #16
Source File: cntk_backend.py    From deepQuest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def one_hot(indices, nb_classes):
    return C.one_hot(indices, nb_classes) 
Example #17
Source File: cntk_backend.py    From deepQuest with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #18
Source File: cntk_backend.py    From keras-lambda with MIT License 5 votes vote down vote up
def sparse_categorical_crossentropy(output, target, from_logits=False):
    target = C.one_hot(target, output.shape[-1])
    target = C.reshape(target, output.shape)
    return categorical_crossentropy(output, target, from_logits) 
Example #19
Source File: cntk_backend.py    From keras-lambda with MIT License 5 votes vote down vote up
def one_hot(indices, nb_classes):
    return C.one_hot(indices, nb_classes) 
Example #20
Source File: cntk_backend.py    From keras-lambda with MIT License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #21
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #22
Source File: cntk_backend.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
    # Here, unlike other backends, the tensors lack a batch dimension:
    axis_without_batch = -1 if axis == -1 else axis - 1
    output_dimensions = list(range(len(output.shape)))
    if axis_without_batch != -1 and axis_without_batch not in output_dimensions:
        raise ValueError(
            '{}{}{}'.format(
                'Unexpected channels axis {}. '.format(axis_without_batch),
                'Expected to be -1 or one of the axes of `output`, ',
                'which has {} dimensions.'.format(len(output.shape))))
    target = C.one_hot(target, output.shape[axis_without_batch],
                       axis=axis_without_batch)
    target = C.reshape(target, output.shape)
    return categorical_crossentropy(target, output, from_logits, axis=axis) 
Example #23
Source File: cntk_backend.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #24
Source File: cntk_backend.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #25
Source File: cntk_emitter.py    From MMdnn with MIT License 5 votes vote down vote up
def emit_Embedding(self, IR_node):
        
        codes = list()
        codes.append("{}_P = cntk.one_hot({}, __weights_dict['{}']['weights'].shape[0])".format(
            IR_node.variable_name,
            self.parent_variable_name(IR_node),
            IR_node.name))
        
        codes.append("{:<15} = layers.Embedding(weights=__weights_dict['{}']['weights'])({}_P)".format(
            IR_node.variable_name,
            # IR_node.get_attr('output_dim'),
            IR_node.name,
            IR_node.variable_name))

        return codes 
Example #26
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1) 
Example #27
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def sparse_categorical_crossentropy(target, output, from_logits=False):
    target = C.one_hot(target, output.shape[-1])
    target = C.reshape(target, output.shape)
    return categorical_crossentropy(target, output, from_logits) 
Example #28
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def one_hot(indices, num_classes):
    return C.one_hot(indices, num_classes) 
Example #29
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def in_top_k(predictions, targets, k):
    _targets = C.one_hot(targets, predictions.shape[-1])
    result = C.classification_error(predictions, _targets, topN=k)
    return 1 - C.reshape(result, shape=()) 
Example #30
Source File: cntk_backend.py    From DeepLearning_Wavelet-LSTM with MIT License 5 votes vote down vote up
def gather(reference, indices):
    # There is a bug in cntk gather op which may cause crash.
    # We have made a fix but not catched in CNTK 2.1 release.
    # Will update with gather op in next release
    if _get_cntk_version() >= 2.2:
        return C.ops.gather(reference, indices)
    else:
        num_classes = reference.shape[0]
        one_hot_matrix = C.ops.one_hot(indices, num_classes)
        return C.times(one_hot_matrix, reference, output_rank=len(reference.shape) - 1)