Python cntk.classification_error() Examples
The following are 23
code examples of cntk.classification_error().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cntk
, or try the search function
.
Example #1
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #2
Source File: cntk_backend.py From keras-lambda with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #3
Source File: cntk_backend.py From keras-lambda with MIT License | 5 votes |
def classification_error(output, target, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #4
Source File: cntk_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #5
Source File: cntk_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #6
Source File: language_understanding.py From nlp-services with MIT License | 5 votes |
def create_criterion_function(model): labels = C.placeholder(name='labels') ce = C.cross_entropy_with_softmax(model, labels) errs = C.classification_error(model, labels) return C.combine([ce, errs]) # (features, labels) -> (loss, metric)
Example #7
Source File: language_understanding.py From nlp-services with MIT License | 5 votes |
def create_criterion_function_preferred(model, labels): ce = C.cross_entropy_with_softmax(model, labels) errs = C.classification_error(model, labels) return ce, errs # (model, labels) -> (loss, error metric)
Example #8
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #9
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #10
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #11
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #12
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #13
Source File: test_ops_compoud.py From ngraph-python with Apache License 2.0 | 5 votes |
def _create_model_and_execute_test(params): # Create CNTK model input_var = C.input_variable(params['input_dim'], np.float32) params['input_var'] = input_var params['act_fun'] = C.layers.blocks.identity params['init_fun'] = C.glorot_uniform() model = params['create_model'](params) label_var = C.input_variable((params['label_dim']), np.float32) loss = C.cross_entropy_with_softmax(model, label_var) eval_error = C.classification_error(model, label_var) lr_schedule = C.learning_rate_schedule(0.05, C.UnitType.minibatch) learner = C.sgd(model.parameters, lr_schedule) trainer = C.Trainer(model, (loss, eval_error), [learner]) input_value, label_value = _generate_random_sample( params['batch_size'], params['input_dim'], params['label_dim'] ) # Import to ngraph ng_loss, placeholders = CNTKImporter(batch_size=params['batch_size']).import_model(loss) parallel_update = CommonSGDOptimizer(0.05).minimize(ng_loss, ng_loss.variables()) transformer = ng.transformers.make_transformer() update_fun = transformer.computation([ng_loss, parallel_update], *placeholders) # Execute on CNTK trainer.train_minibatch({input_var: input_value, label_var: label_value}) cntk_ret = trainer.previous_minibatch_loss_average # Execute on ngraph input_value = np.moveaxis(input_value, 0, -1) label_value = np.moveaxis(label_value, 0, -1) ng_ret = update_fun(input_value, label_value)[0] return cntk_ret, ng_ret
Example #14
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #15
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #16
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #17
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #18
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #19
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #20
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #21
Source File: cntk_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())
Example #22
Source File: cntk_backend.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def in_top_k(predictions, targets, k): _targets = C.one_hot(targets, predictions.shape[-1]) result = C.classification_error(predictions, _targets, topN=k) return 1 - C.reshape(result, shape=())
Example #23
Source File: cntk_backend.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def classification_error(target, output, axis=-1): return C.ops.reduce_mean( C.equal( argmax( output, axis=-1), argmax( target, axis=-1)), axis=C.Axis.all_axes())