Python matplotlib.colors.PowerNorm() Examples
The following are 20
code examples of matplotlib.colors.PowerNorm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.colors
, or try the search function
.
Example #1
Source File: Demo_Matplotlib_Browser_Paned.py From PySimpleGUI with GNU Lesser General Public License v3.0 | 6 votes |
def ExploringNormalizations(): import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from numpy.random import multivariate_normal data = np.vstack([ multivariate_normal([10, 10], [[3, 2], [2, 3]], size=100000), multivariate_normal([30, 20], [[2, 3], [1, 3]], size=1000) ]) gammas = [0.8, 0.5, 0.3] fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].set_title('Linear normalization') axes[0, 0].hist2d(data[:, 0], data[:, 1], bins=100) for ax, gamma in zip(axes.flat[1:], gammas): ax.set_title(r'Power law $(\gamma=%1.1f)$' % gamma) ax.hist2d(data[:, 0], data[:, 1], bins=100, norm=mcolors.PowerNorm(gamma)) fig.tight_layout() return fig
Example #2
Source File: Demo_Matplotlib_Browser.py From PySimpleGUI with GNU Lesser General Public License v3.0 | 6 votes |
def ExploringNormalizations(): import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from numpy.random import multivariate_normal data = np.vstack([ multivariate_normal([10, 10], [[3, 2], [2, 3]], size=100000), multivariate_normal([30, 20], [[2, 3], [1, 3]], size=1000) ]) gammas = [0.8, 0.5, 0.3] fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].set_title('Linear normalization') axes[0, 0].hist2d(data[:, 0], data[:, 1], bins=100) for ax, gamma in zip(axes.flat[1:], gammas): ax.set_title(r'Power law $(\gamma=%1.1f)$' % gamma) ax.hist2d(data[:, 0], data[:, 1], bins=100, norm=mcolors.PowerNorm(gamma)) fig.tight_layout() return fig
Example #3
Source File: Demo_Matplotlib_Browser_Paned.py From PySimpleGUI with GNU Lesser General Public License v3.0 | 6 votes |
def ExploringNormalizations(): import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from numpy.random import multivariate_normal data = np.vstack([ multivariate_normal([10, 10], [[3, 2], [2, 3]], size=100000), multivariate_normal([30, 20], [[2, 3], [1, 3]], size=1000) ]) gammas = [0.8, 0.5, 0.3] fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].set_title('Linear normalization') axes[0, 0].hist2d(data[:, 0], data[:, 1], bins=100) for ax, gamma in zip(axes.flat[1:], gammas): ax.set_title(r'Power law $(\gamma=%1.1f)$' % gamma) ax.hist2d(data[:, 0], data[:, 1], bins=100, norm=mcolors.PowerNorm(gamma)) fig.tight_layout() return fig
Example #4
Source File: Demo_Matplotlib_Browser.py From PySimpleGUI with GNU Lesser General Public License v3.0 | 6 votes |
def ExploringNormalizations(): import matplotlib.pyplot as plt import matplotlib.colors as mcolors import numpy as np from numpy.random import multivariate_normal data = np.vstack([ multivariate_normal([10, 10], [[3, 2], [2, 3]], size=100000), multivariate_normal([30, 20], [[2, 3], [1, 3]], size=1000) ]) gammas = [0.8, 0.5, 0.3] fig, axes = plt.subplots(nrows=2, ncols=2) axes[0, 0].set_title('Linear normalization') axes[0, 0].hist2d(data[:, 0], data[:, 1], bins=100) for ax, gamma in zip(axes.flat[1:], gammas): ax.set_title(r'Power law $(\gamma=%1.1f)$' % gamma) ax.hist2d(data[:, 0], data[:, 1], bins=100, norm=mcolors.PowerNorm(gamma)) fig.tight_layout() return fig
Example #5
Source File: test_colors.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_ndarray_subclass_norm(recwarn): # Emulate an ndarray subclass that handles units # which objects when adding or subtracting with other # arrays. See #6622 and #8696 class MyArray(np.ndarray): def __isub__(self, other): raise RuntimeError def __add__(self, other): raise RuntimeError data = np.arange(-10, 10, 1, dtype=float) data.shape = (10, 2) mydata = data.view(MyArray) for norm in [mcolors.Normalize(), mcolors.LogNorm(), mcolors.SymLogNorm(3, vmax=5, linscale=1), mcolors.Normalize(vmin=mydata.min(), vmax=mydata.max()), mcolors.SymLogNorm(3, vmin=mydata.min(), vmax=mydata.max()), mcolors.PowerNorm(1)]: assert_array_equal(norm(mydata), norm(data)) fig, ax = plt.subplots() ax.imshow(mydata, norm=norm) fig.canvas.draw() if isinstance(norm, mcolors.PowerNorm): assert len(recwarn) == 1 warn = recwarn.pop(UserWarning) assert ('Power-law scaling on negative values is ill-defined' in str(warn.message)) else: assert len(recwarn) == 0 recwarn.clear()
Example #6
Source File: test_colors.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_PowerNorm(): a = np.array([0, 0.5, 1, 1.5], dtype=float) pnorm = mcolors.PowerNorm(1) norm = mcolors.Normalize() assert_array_almost_equal(norm(a), pnorm(a)) a = np.array([-0.5, 0, 2, 4, 8], dtype=float) expected = [0, 0, 1/16, 1/4, 1] pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[2]) == expected[2] assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:]) # Clip = True a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[-1]) == expected[-1] # Clip = True at call time a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) assert_array_almost_equal(pnorm(a, clip=True), expected) assert pnorm(a[0], clip=True) == expected[0] assert pnorm(a[-1], clip=True) == expected[-1]
Example #7
Source File: test_colorbar.py From coffeegrindsize with MIT License | 5 votes |
def test_colorbar_powernorm_extension(): # Test that colorbar with powernorm is extended correctly f, ax = plt.subplots() cb = ColorbarBase(ax, norm=PowerNorm(gamma=0.5, vmin=0.0, vmax=1.0), orientation='vertical', extend='both') assert cb._values[0] >= 0.0
Example #8
Source File: test_colors.py From coffeegrindsize with MIT License | 5 votes |
def test_ndarray_subclass_norm(recwarn): # Emulate an ndarray subclass that handles units # which objects when adding or subtracting with other # arrays. See #6622 and #8696 class MyArray(np.ndarray): def __isub__(self, other): raise RuntimeError def __add__(self, other): raise RuntimeError data = np.arange(-10, 10, 1, dtype=float) data.shape = (10, 2) mydata = data.view(MyArray) for norm in [mcolors.Normalize(), mcolors.LogNorm(), mcolors.SymLogNorm(3, vmax=5, linscale=1), mcolors.Normalize(vmin=mydata.min(), vmax=mydata.max()), mcolors.SymLogNorm(3, vmin=mydata.min(), vmax=mydata.max()), mcolors.PowerNorm(1)]: assert_array_equal(norm(mydata), norm(data)) fig, ax = plt.subplots() ax.imshow(mydata, norm=norm) fig.canvas.draw() assert len(recwarn) == 0 recwarn.clear()
Example #9
Source File: test_colors.py From coffeegrindsize with MIT License | 5 votes |
def test_PowerNorm_translation_invariance(): a = np.array([0, 1/2, 1], dtype=float) expected = [0, 1/8, 1] pnorm = mcolors.PowerNorm(vmin=0, vmax=1, gamma=3) assert_array_almost_equal(pnorm(a), expected) pnorm = mcolors.PowerNorm(vmin=-2, vmax=-1, gamma=3) assert_array_almost_equal(pnorm(a - 2), expected)
Example #10
Source File: test_colors.py From coffeegrindsize with MIT License | 5 votes |
def test_PowerNorm(): a = np.array([0, 0.5, 1, 1.5], dtype=float) pnorm = mcolors.PowerNorm(1) norm = mcolors.Normalize() assert_array_almost_equal(norm(a), pnorm(a)) a = np.array([-0.5, 0, 2, 4, 8], dtype=float) expected = [0, 0, 1/16, 1/4, 1] pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[2]) == expected[2] assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:]) # Clip = True a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[-1]) == expected[-1] # Clip = True at call time a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) assert_array_almost_equal(pnorm(a, clip=True), expected) assert pnorm(a[0], clip=True) == expected[0] assert pnorm(a[-1], clip=True) == expected[-1]
Example #11
Source File: cmap.py From artview with BSD 3-Clause "New" or "Revised" License | 5 votes |
def update_colormap(self): '''Get colormap from GUI.''' self.cmap['lock'] = self.lock_box.isChecked() idx = self.norm_type.currentIndex() self.cmap['vmin'] = float(self.ent_vmin.text()) self.cmap['vmax'] = float(self.ent_vmax.text()) if idx == 0: self.cmap['norm'] = None elif idx == 1: self.cmap['norm'] = colors.Normalize(vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 2: self.cmap['norm'] = colors.LogNorm(vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 3: self.cmap['norm'] = colors.SymLogNorm( linthresh=float(self.ent_linthresh.text()), linscale=float(self.ent_linscale.text()), vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 4: self.cmap['norm'] = colors.PowerNorm( gamma=float(self.ent_gamma.text()), vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 5: bounds = self.get_bounds() self.cmap['norm'] = colors.BoundaryNorm(bounds, ncolors=256) self.plot()
Example #12
Source File: cmap.py From artview with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot(self): '''Replot the colorbar.''' if self.cmap is None: return self.ax.cla() self.cax.cla() cmap = self.cmap if 'norm' not in cmap or cmap['norm'] is None: self.norm_type.setCurrentIndex(0) else: norm_name = cmap['norm'].__class__.__name__ if norm_name == 'Normalize': self.norm_type.setCurrentIndex(1) elif norm_name == 'LogNorm': self.norm_type.setCurrentIndex(2) elif norm_name == 'SymLogNorm': self.norm_type.setCurrentIndex(3) elif norm_name == 'PowerNorm': self.norm_type.setCurrentIndex(4) elif norm_name == 'BoundaryNorm': self.norm_type.setCurrentIndex(5) if cmap is not None: if 'norm' in cmap: norm = cmap['norm'] else: norm = None im = self.ax.imshow(gradient, aspect='auto', cmap=cmap['cmap'], vmin=cmap['vmin'], vmax=cmap['vmax'], norm=norm) plt.colorbar(im, cax=self.cax) self.canvas.draw()
Example #13
Source File: test_colors.py From ImageFusion with MIT License | 5 votes |
def test_PowerNorm(): a = np.array([0, 0.5, 1, 1.5], dtype=np.float) pnorm = mcolors.PowerNorm(1) norm = mcolors.Normalize() assert_array_almost_equal(norm(a), pnorm(a)) a = np.array([-0.5, 0, 2, 4, 8], dtype=np.float) expected = [0, 0, 1/16, 1/4, 1] pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8) assert_array_almost_equal(pnorm(a), expected) assert_equal(pnorm(a[0]), expected[0]) assert_equal(pnorm(a[2]), expected[2]) assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:]) # Clip = True a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) assert_array_almost_equal(pnorm(a), expected) assert_equal(pnorm(a[0]), expected[0]) assert_equal(pnorm(a[-1]), expected[-1]) # Clip = True at call time a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) assert_array_almost_equal(pnorm(a, clip=True), expected) assert_equal(pnorm(a[0], clip=True), expected[0]) assert_equal(pnorm(a[-1], clip=True), expected[-1])
Example #14
Source File: analysisfigure.py From ray-optics with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, fig, gs, ray_list, user_scale_value=0.1, scale_type='fit', yaxis_ticks_position='left', dsp_typ='hist2d', **kwargs): self.fig = fig self.fig.subplots.append(self) self.gs = gs self.ray_list = ray_list self.dsp_typ = dsp_typ if 'title' in kwargs: self.title = kwargs.pop('title', None) if 'norm' in kwargs: self.norm = kwargs.pop('norm', None) else: gamma = kwargs.pop('gamma', 0.5) vmax = kwargs.get('vmax') if 'vmax' in kwargs else None self.norm = PowerNorm(gamma, vmin=0., vmax=vmax) self.plot_kwargs = kwargs self.user_scale_value = user_scale_value self.scale_type = scale_type self.yaxis_ticks_position = yaxis_ticks_position self.update_data()
Example #15
Source File: test_colorbar.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_colorbar_powernorm_extension(): # Test that colorbar with powernorm is extended correctly f, ax = plt.subplots() cb = ColorbarBase(ax, norm=PowerNorm(gamma=0.5, vmin=0.0, vmax=1.0), orientation='vertical', extend='both') assert cb._values[0] >= 0.0
Example #16
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_ndarray_subclass_norm(recwarn): # Emulate an ndarray subclass that handles units # which objects when adding or subtracting with other # arrays. See #6622 and #8696 class MyArray(np.ndarray): def __isub__(self, other): raise RuntimeError def __add__(self, other): raise RuntimeError data = np.arange(-10, 10, 1, dtype=float) data.shape = (10, 2) mydata = data.view(MyArray) for norm in [mcolors.Normalize(), mcolors.LogNorm(), mcolors.SymLogNorm(3, vmax=5, linscale=1), mcolors.Normalize(vmin=mydata.min(), vmax=mydata.max()), mcolors.SymLogNorm(3, vmin=mydata.min(), vmax=mydata.max()), mcolors.PowerNorm(1)]: assert_array_equal(norm(mydata), norm(data)) fig, ax = plt.subplots() ax.imshow(mydata, norm=norm) fig.canvas.draw() assert len(recwarn) == 0 recwarn.clear()
Example #17
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_PowerNorm_translation_invariance(): a = np.array([0, 1/2, 1], dtype=float) expected = [0, 1/8, 1] pnorm = mcolors.PowerNorm(vmin=0, vmax=1, gamma=3) assert_array_almost_equal(pnorm(a), expected) pnorm = mcolors.PowerNorm(vmin=-2, vmax=-1, gamma=3) assert_array_almost_equal(pnorm(a - 2), expected)
Example #18
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_PowerNorm(): a = np.array([0, 0.5, 1, 1.5], dtype=float) pnorm = mcolors.PowerNorm(1) norm = mcolors.Normalize() assert_array_almost_equal(norm(a), pnorm(a)) a = np.array([-0.5, 0, 2, 4, 8], dtype=float) expected = [0, 0, 1/16, 1/4, 1] pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[2]) == expected[2] assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:]) # Clip = True a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) assert_array_almost_equal(pnorm(a), expected) assert pnorm(a[0]) == expected[0] assert pnorm(a[-1]) == expected[-1] # Clip = True at call time a = np.array([-0.5, 0, 1, 8, 16], dtype=float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) assert_array_almost_equal(pnorm(a, clip=True), expected) assert pnorm(a[0], clip=True) == expected[0] assert pnorm(a[-1], clip=True) == expected[-1]
Example #19
Source File: test_colors.py From neural-network-animation with MIT License | 5 votes |
def test_PowerNorm(): a = np.array([0, 0.5, 1, 1.5], dtype=np.float) pnorm = mcolors.PowerNorm(1) norm = mcolors.Normalize() assert_array_almost_equal(norm(a), pnorm(a)) a = np.array([-0.5, 0, 2, 4, 8], dtype=np.float) expected = [0, 0, 1/16, 1/4, 1] pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8) assert_array_almost_equal(pnorm(a), expected) assert_equal(pnorm(a[0]), expected[0]) assert_equal(pnorm(a[2]), expected[2]) assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:]) # Clip = True a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) assert_array_almost_equal(pnorm(a), expected) assert_equal(pnorm(a[0]), expected[0]) assert_equal(pnorm(a[-1]), expected[-1]) # Clip = True at call time a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float) expected = [0, 0, 0, 1, 1] pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) assert_array_almost_equal(pnorm(a, clip=True), expected) assert_equal(pnorm(a[0], clip=True), expected[0]) assert_equal(pnorm(a[-1], clip=True), expected[-1])
Example #20
Source File: drapeplot.py From LSDMappingTools with MIT License | 4 votes |
def make_drape_plot(self): """Creates a matplotlib Axes object with the drape map.""" # but what if fig XOR ax is None?? # if fig is None and ax is None: # self.fig, self.ax = plt.subplots() # else: # self.fig=fig, self.ax=ax # Plot the background self.im_background = self.ax.imshow(self.Background.Hillshade, self.Background.colourmap, extent=self.Background.extents, interpolation="nearest", vmax=450) self._num_drapes += 1 self._drape_list.append(self.im_background) if self._show_background_colourbar: # Plot the background image colour bar self._generic_colourbar_plotter(self.im_background, "Elevation (m)") # Plot the drape (overlay data) on top. # Should be separate function really... if not self.HideDrape: self.im = self.ax.imshow(self.Drape._RasterArray, self._drape_colourmap, extent=self.Drape.extents, interpolation="nearest", vmin=self._vmin, vmax=self._vmax, norm=self._colourbar_normalisation, alpha=self._drape_alpha ) #norm=_mcolors.PowerNorm(gamma=0.2)) self._drape_list.append(self.im) self._num_drapes += 1 # Add the colourbar for the drape self._generic_colourbar_plotter(self.im, self._colourbar_label) # Add a title self._set_subplot_autolabel() self._set_axis_labels(self._xaxis_label, self._yaxis_label) #return self.fig, self.ax