Python matplotlib.colors.Colormap() Examples
The following are 30
code examples of matplotlib.colors.Colormap().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.colors
, or try the search function
.
Example #1
Source File: test_cmaps.py From xcube with MIT License | 6 votes |
def test_get_cmap(self): ensure_cmaps_loaded() cmap_name, cmap = get_cmap('plasma') self.assertEqual('plasma', cmap_name) self.assertIsInstance(cmap, Colormap) cmap_name, cmap = get_cmap('PLASMA') self.assertEqual('viridis', cmap_name) self.assertIsInstance(cmap, Colormap) cmap_name, cmap = get_cmap('PLASMA', default_cmap_name='magma') self.assertEqual('magma', cmap_name) self.assertIsInstance(cmap, Colormap) with self.assertRaises(ValueError): get_cmap('PLASMA', default_cmap_name='MAGMA')
Example #2
Source File: colours.py From LSDMappingTools with MIT License | 6 votes |
def __init__(self, cmap, levels): if isinstance(cmap, str): self.cmap = _cm.get_cmap(cmap) elif isinstance(cmap, _mcolors.Colormap): self.cmap = cmap else: raise ValueError('Colourmap must either be a string name of a colormap, \ or a Colormap object (class instance). Please try again.' \ "Colourmap supplied is of type: ", type(cmap)) self.N = self.cmap.N self.monochrome = self.cmap.monochrome self.levels = _np.asarray(levels)#, dtype='float64') self._x = self.levels self.levmax = self.levels.max() self.levmin = self.levels.min() self.transformed_levels = _np.linspace(self.levmin, self.levmax, len(self.levels))
Example #3
Source File: visualize.py From deep_pipe with MIT License | 6 votes |
def slice3d(*data: np.ndarray, axis: int = -1, scale: int = 5, max_columns: int = None, colorbar: bool = False, show_axes: bool = False, cmap: Union[Colormap, str] = 'gray', vlim: AxesParams = None): """ Creates an interactive plot, simultaneously showing slices along a given ``axis`` for all the passed images. Parameters ---------- data axis scale the figure scale. max_columns the maximal number of figures in a row. If None - all figures will be in the same row. colorbar Whether to display a colorbar. show_axes Whether to do display grid on the image. cmap vlim used to normalize luminance data. If None - the limits are determined automatically. Must be broadcastable to (len(data), 2). See `matplotlib.pyplot.imshow` (vmin and vmax) for details. """ _slice_base(data, axis, scale, max_columns, colorbar, show_axes, cmap, vlim)
Example #4
Source File: colormaputil.py From allesfitter with MIT License | 6 votes |
def get_cmap( cmap, name=None, n=256 ): """ in: a name "Blues" "BuGn_r" ... of a builtin cmap (case-sensitive) or a filename, np.loadtxt() n x 3 or 4 ints 0..255 or floats 0..1 or a cmap already or a numpy array. See http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps or in IPython, pl.cm.<tab> """ if isinstance( cmap, colors.Colormap ): return cmap if isinstance( cmap, str ): if cmap in cm.cmap_d: return pl.get_cmap( cmap ) # "Blues" ... A = np.loadtxt( cmap, delimiter=None ) # None: white space name = name or cmap.split("/")[-1] .split(".")[0] # .../xx.csv -> xx else: A = cmap # numpy array or array-like return array_cmap( A, name, n=n )
Example #5
Source File: cm.py From coffeegrindsize with MIT License | 5 votes |
def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] else: return cmap_d[name]._resample(lut) else: raise ValueError( "Colormap %s is not recognized. Possible values are: %s" % (name, ', '.join(sorted(cmap_d))))
Example #6
Source File: cm.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not isinstance(name, str): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap
Example #7
Source File: cm.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] else: return cmap_d[name]._resample(lut) else: raise ValueError( "Colormap %s is not recognized. Possible values are: %s" % (name, ', '.join(sorted(cmap_d))))
Example #8
Source File: cm.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}
Example #9
Source File: util.py From holoviews with BSD 3-Clause "New" or "Revised" License | 5 votes |
def mplcmap_to_palette(cmap, ncolors=None, categorical=False): """ Converts a matplotlib colormap to palette of RGB hex strings." """ from matplotlib.colors import Colormap, ListedColormap ncolors = ncolors or 256 if not isinstance(cmap, Colormap): import matplotlib.cm as cm # Alias bokeh Category cmaps with mpl tab cmaps if cmap.startswith('Category'): cmap = cmap.replace('Category', 'tab') try: cmap = cm.get_cmap(cmap) except: cmap = cm.get_cmap(cmap.lower()) if isinstance(cmap, ListedColormap): if categorical: palette = [rgb2hex(cmap.colors[i%cmap.N]) for i in range(ncolors)] return palette elif cmap.N > ncolors: palette = [rgb2hex(c) for c in cmap(np.arange(cmap.N))] if len(palette) != ncolors: palette = [palette[int(v)] for v in np.linspace(0, len(palette)-1, ncolors)] return palette return [rgb2hex(c) for c in cmap(np.linspace(0, 1, ncolors))]
Example #10
Source File: colormaputil.py From allesfitter with MIT License | 5 votes |
def array_cmap( A, name=None, n=256 ): """ numpy array -> a cmap, matplotlib.colors.Colormap n x 3 or 4 ints 0 .. 255 or floats 0 ..1 """ A = np.asanyarray( A ) assert A.ndim == 2 and A.shape[1] in (3, 4), \ "array must be n x 3 or 4, not %s" % str(A.shape) Amin, Amax = A.min(), A.max() if A.dtype.kind == "i": assert 0 <= Amin < Amax <= 255, "Amin %d Amax %d must be in 0 .. 255" % (Amin, Amax) A = A / 255. # not /= else: assert 0 <= Amin < Amax <= 1, "Amin %g Amax %g must be in 0 .. 1" % (Amin, Amax) return colors.LinearSegmentedColormap.from_list( name or "noname", A, N=n )
Example #11
Source File: cm.py From coffeegrindsize with MIT License | 5 votes |
def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not isinstance(name, str): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap
Example #12
Source File: cm.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}
Example #13
Source File: cm.py From coffeegrindsize with MIT License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}
Example #14
Source File: cm.py From CogAlg with MIT License | 5 votes |
def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not isinstance(name, str): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap
Example #15
Source File: cm.py From CogAlg with MIT License | 5 votes |
def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] else: return cmap_d[name]._resample(lut) else: raise ValueError( "Colormap %s is not recognized. Possible values are: %s" % (name, ', '.join(sorted(cmap_d))))
Example #16
Source File: cm.py From CogAlg with MIT License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}
Example #17
Source File: test_utils.py From msmexplorer with MIT License | 5 votes |
def test_make_colormap(): cmap = make_colormap(['rawdenim', 'lightgray', 'pomegranate']) assert isinstance(cmap, Colormap)
Example #18
Source File: cm.py From twitter-stock-recommendation with MIT License | 5 votes |
def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not isinstance(name, six.string_types): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap
Example #19
Source File: cm.py From twitter-stock-recommendation with MIT License | 5 votes |
def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] else: return cmap_d[name]._resample(lut) else: raise ValueError( "Colormap %s is not recognized. Possible values are: %s" % (name, ', '.join(sorted(cmap_d))))
Example #20
Source File: cm.py From twitter-stock-recommendation with MIT License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. If *None*, *norm* defaults to a *colors.Normalize* object which initializes its scaling based on the first data processed. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}
Example #21
Source File: __init__.py From scanpy with BSD 3-Clause "New" or "Revised" License | 5 votes |
def dpt_timeseries( adata: AnnData, color_map: Union[str, Colormap] = None, show: Optional[bool] = None, save: Optional[bool] = None, as_heatmap: bool = True, ): """\ Heatmap of pseudotime series. Parameters ---------- as_heatmap Plot the timeseries as heatmap. """ if adata.n_vars > 100: logg.warning( 'Plotting more than 100 genes might take some while, ' 'consider selecting only highly variable genes, for example.' ) # only if number of genes is not too high if as_heatmap: # plot time series as heatmap, as in Haghverdi et al. (2016), Fig. 1d timeseries_as_heatmap( adata.X[adata.obs['dpt_order_indices'].values], var_names=adata.var_names, highlights_x=adata.uns['dpt_changepoints'], color_map=color_map, ) else: # plot time series as gene expression vs time timeseries( adata.X[adata.obs['dpt_order_indices'].values], var_names=adata.var_names, highlights_x=adata.uns['dpt_changepoints'], xlim=[0, 1.3 * adata.X.shape[0]], ) pl.xlabel('dpt order') savefig_or_show('dpt_timeseries', save=save, show=show)
Example #22
Source File: colours.py From LSDMappingTools with MIT License | 5 votes |
def truncate_colormap(cmap, minval=0.0, maxval=1.0, n=-1): """ Truncates a standard matplotlib colourmap so that you can use part of the colour range in your plots. Handy when the colourmap you like has very light values at one end of the map that can't be seen easily. Arguments: cmap (:obj: `Colormap`): A matplotlib Colormap object. Note this is not a string name of the colourmap, you must pass the object type. minval (int, optional): The lower value to truncate the colour map to. colourmaps range from 0.0 to 1.0. Should be 0.0 to include the full lower end of the colour spectrum. maxval (int, optional): The upper value to truncate the colour map to. maximum should be 1.0 to include the full upper range of colours. n (int): Leave at default. Example: minColor = 0.00 maxColor = 0.85 inferno_t = truncate_colormap(_plt.get_cmap("inferno"), minColor, maxColor) """ cmap = _plt.get_cmap(cmap) if n == -1: n = cmap.N new_cmap = _mcolors.LinearSegmentedColormap.from_list( 'trunc({name},{a:.2f},{b:.2f})'.format(name=cmap.name, a=minval, b=maxval), cmap(_np.linspace(minval, maxval, n))) return new_cmap
Example #23
Source File: colours.py From LSDMappingTools with MIT License | 5 votes |
def discrete_colourmap(N, base_cmap=None): """Creates an N-bin discrete colourmap from the specified input colormap. Author: github.com/jakevdp adopted by DAV Note: Modified so you can pass in the string name of a colourmap or a Colormap object. Arguments: N (int): Number of bins for the discrete colourmap. I.e. the number of colours you will get. base_cmap (str or Colormap object): Can either be the name of a colourmap e.g. "jet" or a matplotlib Colormap object """ print(type(base_cmap)) if isinstance(base_cmap, _mcolors.Colormap): base = base_cmap elif isinstance(base_cmap, str): base = _plt.cm.get_cmap(base_cmap) else: print("Colourmap supplied is of type: ", type(base_cmap)) raise ValueError('Colourmap must either be a string name of a colormap, \ or a Colormap object (class instance). Please try again.') color_list = base(_np.linspace(0, 1, N)) cmap_name = base.name + str(N) return base.from_list(cmap_name, color_list, N)
Example #24
Source File: colours.py From LSDMappingTools with MIT License | 5 votes |
def colorbar_index(fig, cax, ncolors, cmap, drape_min_threshold, drape_max): """State-machine like function that creates a discrete colormap and plots it on a figure that is passed as an argument. Arguments: fig (matplotlib.Figure): Instance of a matplotlib figure object. cax (matplotlib.Axes): Axes instance to create the colourbar from. This must be the Axes containing the data that your colourbar will be mapped from. ncolors (int): The number of colours in the discrete colourbar map. cmap (str or Colormap object): Either the name of a matplotlib colormap, or an object instance of the colormap, e.g. cm.jet drape_min_threshold (float): Number setting the threshold level of the drape raster This should match any threshold you have set to mask the drape/overlay raster. drape_max (float): Similar to above, but for the upper threshold of your drape mask. """ discrete_cmap = discrete_colourmap(ncolors, cmap) mappable = _cm.ScalarMappable(cmap=discrete_cmap) mappable.set_array([]) #mappable.set_clim(-0.5, ncolors + 0.5) mappable.set_clim(drape_min_threshold, drape_max) print(type(fig)) print(type(mappable)) print(type(cax)) print() cbar = _plt.colorbar(mappable, cax=cax) #switched from fig to plt to expose the labeling params print(type(cbar)) #cbar.set_ticks(_np.linspace(0, ncolors, ncolors)) pad = ((ncolors - 1) / ncolors) / 2 # Move labels to center of bars. cbar.set_ticks(_np.linspace(drape_min_threshold + pad, drape_max - pad, ncolors)) return cbar # Generate random colormap
Example #25
Source File: cm.py From Computable with MIT License | 5 votes |
def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not cbook.is_string_like(name): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap
Example #26
Source File: cm.py From Computable with MIT License | 5 votes |
def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name with a corresponding data dictionary in *datad*. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] elif name in datad: return _generate_cmap(name, lut) raise ValueError("Colormap %s is not recognized" % name)
Example #27
Source File: cm.py From Computable with MIT License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}
Example #28
Source File: cm.py From matplotlib-4-abaqus with MIT License | 5 votes |
def register_cmap(name=None, cmap=None, data=None, lut=None): """ Add a colormap to the set recognized by :func:`get_cmap`. It can be used in two ways:: register_cmap(name='swirly', cmap=swirly_cmap) register_cmap(name='choppy', data=choppydata, lut=128) In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap` instance. The *name* is optional; if absent, the name will be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*. In the second case, the three arguments are passed to the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer, and the resulting colormap is registered. """ if name is None: try: name = cmap.name except AttributeError: raise ValueError("Arguments must include a name or a Colormap") if not cbook.is_string_like(name): raise ValueError("Colormap name must be a string") if isinstance(cmap, colors.Colormap): cmap_d[name] = cmap return # For the remainder, let exceptions propagate. if lut is None: lut = mpl.rcParams['image.lut'] cmap = colors.LinearSegmentedColormap(name, data, lut) cmap_d[name] = cmap
Example #29
Source File: cm.py From matplotlib-4-abaqus with MIT License | 5 votes |
def get_cmap(name=None, lut=None): """ Get a colormap instance, defaulting to rc values if *name* is None. Colormaps added with :func:`register_cmap` take precedence over built-in colormaps. If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be returned. If *lut* is not None it must be an integer giving the number of entries desired in the lookup table, and *name* must be a standard mpl colormap name with a corresponding data dictionary in *datad*. """ if name is None: name = mpl.rcParams['image.cmap'] if isinstance(name, colors.Colormap): return name if name in cmap_d: if lut is None: return cmap_d[name] elif name in datad: return _generate_cmap(name, lut) raise ValueError("Colormap %s is not recognized" % name)
Example #30
Source File: cm.py From matplotlib-4-abaqus with MIT License | 5 votes |
def __init__(self, norm=None, cmap=None): r""" Parameters ---------- norm : :class:`matplotlib.colors.Normalize` instance The normalizing object which scales data, typically into the interval ``[0, 1]``. cmap : str or :class:`~matplotlib.colors.Colormap` instance The colormap used to map normalized data values to RGBA colors. """ self.callbacksSM = cbook.CallbackRegistry() if cmap is None: cmap = get_cmap() if norm is None: norm = colors.Normalize() self._A = None #: The Normalization instance of this ScalarMappable. self.norm = norm #: The Colormap instance of this ScalarMappable. self.cmap = get_cmap(cmap) #: The last colorbar associated with this ScalarMappable. May be None. self.colorbar = None self.update_dict = {'array': False}