Python preprocessing.make_tf_example() Examples
The following are 19
code examples of preprocessing.make_tf_example().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
preprocessing
, or try the search function
.
Example #1
Source File: test_preprocessing.py From training with Apache License 2.0 | 6 votes |
def test_tpu_rotate(self): num_records = 100 raw_data = self.create_random_data(num_records) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) self.reset_random() run_one = self.extract_tpu_data(f.name, random_rotation=False) self.reset_random() run_two = self.extract_tpu_data(f.name, random_rotation=True) self.reset_random() run_three = self.extract_tpu_data(f.name, random_rotation=True) self.assert_rotate_data(run_one, run_two, run_three)
Example #2
Source File: test_preprocessing.py From training with Apache License 2.0 | 6 votes |
def test_rotate_pyfunc(self): num_records = 20 raw_data = self.create_random_data(num_records) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) self.reset_random() run_one = self.extract_data(f.name, random_rotation=False) self.reset_random() run_two = self.extract_data(f.name, random_rotation=True) self.reset_random() run_three = self.extract_data(f.name, random_rotation=True) self.assert_rotate_data(run_one, run_two, run_three)
Example #3
Source File: test_preprocessing.py From training with Apache License 2.0 | 5 votes |
def test_serialize_round_trip(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name) self.assertEqualData(raw_data, recovered_data)
Example #4
Source File: preprocessing_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_serialize_round_trip_no_parse(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as start_file, \ tempfile.NamedTemporaryFile() as rewritten_file: preprocessing.write_tf_examples(start_file.name, tfexamples) # We want to test that the rewritten, shuffled file contains correctly # serialized tf.Examples. batch_size = 4 batches = list(preprocessing.shuffle_tf_examples( 1000, batch_size, [start_file.name])) # 2 batches of 4, 1 incomplete batch of 2. self.assertEqual(len(batches), 3) # concatenate list of lists into one list all_batches = list(itertools.chain.from_iterable(batches)) for _ in batches: preprocessing.write_tf_examples( rewritten_file.name, all_batches, serialize=False) original_data = self.extract_data(start_file.name) recovered_data = self.extract_data(rewritten_file.name) # stuff is shuffled, so sort before checking equality def sort_key(nparray_tuple): return nparray_tuple[2] original_data = sorted(original_data, key=sort_key) recovered_data = sorted(recovered_data, key=sort_key) self.assertEqualData(original_data, recovered_data)
Example #5
Source File: preprocessing_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_filter(self): raw_data = self.create_random_data(100) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name, filter_amount=.05) self.assertLess(len(recovered_data), 50)
Example #6
Source File: preprocessing_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_serialize_round_trip(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name) self.assertEqualData(raw_data, recovered_data)
Example #7
Source File: preprocessing_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_serialize_round_trip_no_parse(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as start_file, \ tempfile.NamedTemporaryFile() as rewritten_file: preprocessing.write_tf_examples(start_file.name, tfexamples) # We want to test that the rewritten, shuffled file contains correctly # serialized tf.Examples. batch_size = 4 batches = list(preprocessing.shuffle_tf_examples( 1000, batch_size, [start_file.name])) # 2 batches of 4, 1 incomplete batch of 2. self.assertEqual(len(batches), 3) # concatenate list of lists into one list all_batches = list(itertools.chain.from_iterable(batches)) for _ in batches: preprocessing.write_tf_examples( rewritten_file.name, all_batches, serialize=False) original_data = self.extract_data(start_file.name) recovered_data = self.extract_data(rewritten_file.name) # stuff is shuffled, so sort before checking equality def sort_key(nparray_tuple): return nparray_tuple[2] original_data = sorted(original_data, key=sort_key) recovered_data = sorted(recovered_data, key=sort_key) self.assertEqualData(original_data, recovered_data)
Example #8
Source File: preprocessing_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_filter(self): raw_data = self.create_random_data(100) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name, filter_amount=.05) self.assertLess(len(recovered_data), 50)
Example #9
Source File: preprocessing_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_serialize_round_trip(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name) self.assertEqualData(raw_data, recovered_data)
Example #10
Source File: test_preprocessing.py From training with Apache License 2.0 | 5 votes |
def test_filter(self): raw_data = self.create_random_data(100) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name, filter_amount=.05) # TODO: this will flake out very infrequently. Use set_random_seed self.assertLess(len(recovered_data), 50)
Example #11
Source File: test_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def test_serialize_round_trip(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name) self.assertEqualData(raw_data, recovered_data)
Example #12
Source File: preprocessing_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_serialize_round_trip_no_parse(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as start_file, \ tempfile.NamedTemporaryFile() as rewritten_file: preprocessing.write_tf_examples(start_file.name, tfexamples) # We want to test that the rewritten, shuffled file contains correctly # serialized tf.Examples. batch_size = 4 batches = list(preprocessing.shuffle_tf_examples( 1000, batch_size, [start_file.name])) # 2 batches of 4, 1 incomplete batch of 2. self.assertEqual(len(batches), 3) # concatenate list of lists into one list all_batches = list(itertools.chain.from_iterable(batches)) for _ in batches: preprocessing.write_tf_examples( rewritten_file.name, all_batches, serialize=False) original_data = self.extract_data(start_file.name) recovered_data = self.extract_data(rewritten_file.name) # stuff is shuffled, so sort before checking equality def sort_key(nparray_tuple): return nparray_tuple[2] original_data = sorted(original_data, key=sort_key) recovered_data = sorted(recovered_data, key=sort_key) self.assertEqualData(original_data, recovered_data)
Example #13
Source File: preprocessing_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_filter(self): raw_data = self.create_random_data(100) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name, filter_amount=.05) self.assertLess(len(recovered_data), 50)
Example #14
Source File: preprocessing_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_serialize_round_trip(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name) self.assertEqualData(raw_data, recovered_data)
Example #15
Source File: test_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def test_filter(self): raw_data = self.create_random_data(100) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name, filter_amount=.05) # TODO: this will flake out very infrequently. Use set_random_seed self.assertLess(len(recovered_data), 50)
Example #16
Source File: test_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def test_serialize_round_trip(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name) self.assertEqualData(raw_data, recovered_data)
Example #17
Source File: test_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def test_serialize_round_trip_no_parse(self): np.random.seed(1) raw_data = self.create_random_data(10) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as start_file, \ tempfile.NamedTemporaryFile() as rewritten_file: preprocessing.write_tf_examples(start_file.name, tfexamples) # We want to test that the rewritten, shuffled file contains correctly # serialized tf.Examples. batch_size = 4 batches = list(preprocessing.shuffle_tf_examples( batch_size, [start_file.name])) # 2 batches of 4, 1 incomplete batch of 2. self.assertEqual(len(batches), 3) # concatenate list of lists into one list all_batches = list(itertools.chain.from_iterable(batches)) for batch in batches: preprocessing.write_tf_examples( rewritten_file.name, all_batches, serialize=False) original_data = self.extract_data(start_file.name) recovered_data = self.extract_data(rewritten_file.name) # stuff is shuffled, so sort before checking equality def sort_key(nparray_tuple): return nparray_tuple[2] original_data = sorted(original_data, key=sort_key) recovered_data = sorted(recovered_data, key=sort_key) self.assertEqualData(original_data, recovered_data)
Example #18
Source File: test_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def test_filter(self): raw_data = self.create_random_data(100) tfexamples = list(map(preprocessing.make_tf_example, *zip(*raw_data))) with tempfile.NamedTemporaryFile() as f: preprocessing.write_tf_examples(f.name, tfexamples) recovered_data = self.extract_data(f.name, filter_amount=.05) # TODO: this will flake out very infrequently. Use set_random_seed self.assertLess(len(recovered_data), 50)
Example #19
Source File: rotate_examples.py From training with Apache License 2.0 | 4 votes |
def convert(paths): position, in_path, out_path = paths assert tf.gfile.Exists(in_path) assert tf.gfile.Exists(os.path.dirname(out_path)) in_size = get_size(in_path) if tf.gfile.Exists(out_path): # Make sure out_path is about the size of in_path size = get_size(out_path) error = (size - in_size) / (in_size + 1) # 5% smaller to 20% larger if -0.05 < error < 0.20: return out_path + " already existed" return "ERROR on file size ({:.1f}% diff) {}".format( 100 * error, out_path) num_batches = dual_net.EXAMPLES_PER_GENERATION // FLAGS.batch_size + 1 with tf.python_io.TFRecordWriter(out_path, OPTS) as writer: record_iter = tqdm( batched_reader(in_path), desc=os.path.basename(in_path), position=position, total=num_batches) for record in record_iter: xs, rs = preprocessing.batch_parse_tf_example(len(record), record) # Undo cast in batch_parse_tf_example. xs = tf.cast(xs, tf.uint8) # map the rotation function. x_rot, r_rot = preprocessing._random_rotation(xs, rs) with tf.Session() as sess: x_rot, r_rot = sess.run([x_rot, r_rot]) tf.reset_default_graph() pi_rot = r_rot['pi_tensor'] val_rot = r_rot['value_tensor'] for r, x, pi, val in zip(record, x_rot, pi_rot, val_rot): record_out = preprocessing.make_tf_example(x, pi, val) serialized = record_out.SerializeToString() writer.write(serialized) assert len(r) == len(serialized), (len(r), len(serialized))