Python tensorflow.python.saved_model.signature_constants.REGRESS_OUTPUTS Examples
The following are 14
code examples of tensorflow.python.saved_model.signature_constants.REGRESS_OUTPUTS().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.saved_model.signature_constants
, or try the search function
.
Example #1
Source File: signature_def_utils_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testRegressionSignatureDef(self): input1 = constant_op.constant("a", name="input-1") output1 = constant_op.constant("b", name="output-1") signature_def = signature_def_utils.regression_signature_def(input1, output1) self.assertEqual(signature_constants.REGRESS_METHOD_NAME, signature_def.method_name) # Check inputs in signature def. self.assertEqual(1, len(signature_def.inputs)) x_tensor_info_actual = ( signature_def.inputs[signature_constants.REGRESS_INPUTS]) self.assertEqual("input-1:0", x_tensor_info_actual.name) self.assertEqual(types_pb2.DT_STRING, x_tensor_info_actual.dtype) self.assertEqual(0, len(x_tensor_info_actual.tensor_shape.dim)) # Check outputs in signature def. self.assertEqual(1, len(signature_def.outputs)) y_tensor_info_actual = ( signature_def.outputs[signature_constants.REGRESS_OUTPUTS]) self.assertEqual("output-1:0", y_tensor_info_actual.name) self.assertEqual(types_pb2.DT_STRING, y_tensor_info_actual.dtype) self.assertEqual(0, len(y_tensor_info_actual.tensor_shape.dim))
Example #2
Source File: bundle_shim_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testConvertDefaultSignatureRegressionToSignatureDef(self): signatures_proto = manifest_pb2.Signatures() regression_signature = manifest_pb2.RegressionSignature() regression_signature.input.CopyFrom( manifest_pb2.TensorBinding( tensor_name=signature_constants.REGRESS_INPUTS)) regression_signature.output.CopyFrom( manifest_pb2.TensorBinding( tensor_name=signature_constants.REGRESS_OUTPUTS)) signatures_proto.default_signature.regression_signature.CopyFrom( regression_signature) signature_def = bundle_shim._convert_default_signature_to_signature_def( signatures_proto) # Validate regression signature correctly copied over. self.assertEqual(signature_def.method_name, signature_constants.REGRESS_METHOD_NAME) self.assertEqual(len(signature_def.inputs), 1) self.assertEqual(len(signature_def.outputs), 1) self.assertProtoEquals( signature_def.inputs[signature_constants.REGRESS_INPUTS], meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_INPUTS)) self.assertProtoEquals( signature_def.outputs[signature_constants.REGRESS_OUTPUTS], meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_OUTPUTS))
Example #3
Source File: signature_def_utils_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _is_valid_regression_signature(signature_def): """Determine whether the argument is a servable 'regress' SignatureDef.""" if signature_def.method_name != signature_constants.REGRESS_METHOD_NAME: return False if (set(signature_def.inputs.keys()) != set([signature_constants.REGRESS_INPUTS])): return False if (signature_def.inputs[signature_constants.REGRESS_INPUTS].dtype != types_pb2.DT_STRING): return False if (set(signature_def.outputs.keys()) != set([signature_constants.REGRESS_OUTPUTS])): return False if (signature_def.outputs[signature_constants.REGRESS_OUTPUTS].dtype != types_pb2.DT_FLOAT): return False return True
Example #4
Source File: signature_def_utils_test.py From keras-lambda with MIT License | 6 votes |
def testRegressionSignatureDef(self): input1 = constant_op.constant("a", name="input-1") output1 = constant_op.constant("b", name="output-1") signature_def = signature_def_utils.regression_signature_def(input1, output1) self.assertEqual(signature_constants.REGRESS_METHOD_NAME, signature_def.method_name) # Check inputs in signature def. self.assertEqual(1, len(signature_def.inputs)) x_tensor_info_actual = ( signature_def.inputs[signature_constants.REGRESS_INPUTS]) self.assertEqual("input-1:0", x_tensor_info_actual.name) self.assertEqual(types_pb2.DT_STRING, x_tensor_info_actual.dtype) self.assertEqual(0, len(x_tensor_info_actual.tensor_shape.dim)) # Check outputs in signature def. self.assertEqual(1, len(signature_def.outputs)) y_tensor_info_actual = ( signature_def.outputs[signature_constants.REGRESS_OUTPUTS]) self.assertEqual("output-1:0", y_tensor_info_actual.name) self.assertEqual(types_pb2.DT_STRING, y_tensor_info_actual.dtype) self.assertEqual(0, len(y_tensor_info_actual.tensor_shape.dim))
Example #5
Source File: bundle_shim_test.py From keras-lambda with MIT License | 6 votes |
def testConvertDefaultSignatureRegressionToSignatureDef(self): signatures_proto = manifest_pb2.Signatures() regression_signature = manifest_pb2.RegressionSignature() regression_signature.input.CopyFrom( manifest_pb2.TensorBinding( tensor_name=signature_constants.REGRESS_INPUTS)) regression_signature.output.CopyFrom( manifest_pb2.TensorBinding( tensor_name=signature_constants.REGRESS_OUTPUTS)) signatures_proto.default_signature.regression_signature.CopyFrom( regression_signature) signature_def = bundle_shim._convert_default_signature_to_signature_def( signatures_proto) # Validate regression signature correctly copied over. self.assertEqual(signature_def.method_name, signature_constants.REGRESS_METHOD_NAME) self.assertEqual(len(signature_def.inputs), 1) self.assertEqual(len(signature_def.outputs), 1) self.assertProtoEquals( signature_def.inputs[signature_constants.REGRESS_INPUTS], meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_INPUTS)) self.assertProtoEquals( signature_def.outputs[signature_constants.REGRESS_OUTPUTS], meta_graph_pb2.TensorInfo(name=signature_constants.REGRESS_OUTPUTS))
Example #6
Source File: signature_def_utils_impl.py From lambda-packs with MIT License | 5 votes |
def regression_signature_def(examples, predictions): """Creates regression signature from given examples and predictions. Args: examples: `Tensor`. predictions: `Tensor`. Returns: A regression-flavored signature_def. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None for regression.') if predictions is None: raise ValueError('predictions cannot be None for regression.') input_tensor_info = utils.build_tensor_info(examples) signature_inputs = {signature_constants.REGRESS_INPUTS: input_tensor_info} output_tensor_info = utils.build_tensor_info(predictions) signature_outputs = {signature_constants.REGRESS_OUTPUTS: output_tensor_info} signature_def = build_signature_def( signature_inputs, signature_outputs, signature_constants.REGRESS_METHOD_NAME) return signature_def
Example #7
Source File: signature_def_utils_impl.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def regression_signature_def(examples, predictions): """Creates regression signature from given examples and predictions. Args: examples: `Tensor`. predictions: `Tensor`. Returns: A regression-flavored signature_def. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None for regression.') if predictions is None: raise ValueError('predictions cannot be None for regression.') input_tensor_info = utils.build_tensor_info(examples) signature_inputs = {signature_constants.REGRESS_INPUTS: input_tensor_info} output_tensor_info = utils.build_tensor_info(predictions) signature_outputs = {signature_constants.REGRESS_OUTPUTS: output_tensor_info} signature_def = build_signature_def( signature_inputs, signature_outputs, signature_constants.REGRESS_METHOD_NAME) return signature_def
Example #8
Source File: bundle_shim.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _convert_default_signature_to_signature_def(signatures): """Convert default signature to object of type SignatureDef. Args: signatures: object of type manifest_pb2.Signatures() Returns: object of type SignatureDef which contains a converted version of default signature from input signatures object Raises: RuntimeError: if default signature type is not classification or regression. """ default_signature = signatures.default_signature signature_def = meta_graph_pb2.SignatureDef() if default_signature.WhichOneof("type") == "regression_signature": regression_signature = default_signature.regression_signature signature_def.method_name = signature_constants.REGRESS_METHOD_NAME _add_input_to_signature_def(regression_signature.input.tensor_name, signature_constants.REGRESS_INPUTS, signature_def) _add_output_to_signature_def(regression_signature.output.tensor_name, signature_constants.REGRESS_OUTPUTS, signature_def) elif default_signature.WhichOneof("type") == "classification_signature": classification_signature = default_signature.classification_signature signature_def.method_name = signature_constants.CLASSIFY_METHOD_NAME _add_input_to_signature_def(classification_signature.input.tensor_name, signature_constants.CLASSIFY_INPUTS, signature_def) _add_output_to_signature_def(classification_signature.classes.tensor_name, signature_constants.CLASSIFY_OUTPUT_CLASSES, signature_def) _add_output_to_signature_def(classification_signature.scores.tensor_name, signature_constants.CLASSIFY_OUTPUT_SCORES, signature_def) else: raise RuntimeError("Only classification and regression default signatures " "are supported for up-conversion. %s is not " "supported" % default_signature.WhichOneof("type")) return signature_def
Example #9
Source File: signature_def_utils_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def regression_signature_def(examples, predictions): """Creates regression signature from given examples and predictions. Args: examples: `Tensor`. predictions: `Tensor`. Returns: A regression-flavored signature_def. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('Regression examples cannot be None.') if not isinstance(examples, ops.Tensor): raise ValueError('Regression examples must be a string Tensor.') if predictions is None: raise ValueError('Regression predictions cannot be None.') input_tensor_info = utils.build_tensor_info(examples) if input_tensor_info.dtype != types_pb2.DT_STRING: raise ValueError('Regression examples must be a string Tensor.') signature_inputs = {signature_constants.REGRESS_INPUTS: input_tensor_info} output_tensor_info = utils.build_tensor_info(predictions) if output_tensor_info.dtype != types_pb2.DT_FLOAT: raise ValueError('Regression output must be a float Tensor.') signature_outputs = {signature_constants.REGRESS_OUTPUTS: output_tensor_info} signature_def = build_signature_def( signature_inputs, signature_outputs, signature_constants.REGRESS_METHOD_NAME) return signature_def
Example #10
Source File: signature_def_utils_impl.py From keras-lambda with MIT License | 5 votes |
def regression_signature_def(examples, predictions): """Creates regression signature from given examples and predictions. Args: examples: `Tensor`. predictions: `Tensor`. Returns: A regression-flavored signature_def. Raises: ValueError: If examples is `None`. """ if examples is None: raise ValueError('examples cannot be None for regression.') if predictions is None: raise ValueError('predictions cannot be None for regression.') input_tensor_info = utils.build_tensor_info(examples) signature_inputs = {signature_constants.REGRESS_INPUTS: input_tensor_info} output_tensor_info = utils.build_tensor_info(predictions) signature_outputs = {signature_constants.REGRESS_OUTPUTS: output_tensor_info} signature_def = build_signature_def( signature_inputs, signature_outputs, signature_constants.REGRESS_METHOD_NAME) return signature_def
Example #11
Source File: bundle_shim.py From keras-lambda with MIT License | 5 votes |
def _convert_default_signature_to_signature_def(signatures): """Convert default signature to object of type SignatureDef. Args: signatures: object of type manifest_pb2.Signatures() Returns: object of type SignatureDef which contains a converted version of default signature from input signatures object Raises: RuntimeError: if default signature type is not classification or regression. """ default_signature = signatures.default_signature signature_def = meta_graph_pb2.SignatureDef() if default_signature.WhichOneof("type") == "regression_signature": regression_signature = default_signature.regression_signature signature_def.method_name = signature_constants.REGRESS_METHOD_NAME _add_input_to_signature_def(regression_signature.input.tensor_name, signature_constants.REGRESS_INPUTS, signature_def) _add_output_to_signature_def(regression_signature.output.tensor_name, signature_constants.REGRESS_OUTPUTS, signature_def) elif default_signature.WhichOneof("type") == "classification_signature": classification_signature = default_signature.classification_signature signature_def.method_name = signature_constants.CLASSIFY_METHOD_NAME _add_input_to_signature_def(classification_signature.input.tensor_name, signature_constants.CLASSIFY_INPUTS, signature_def) _add_output_to_signature_def(classification_signature.classes.tensor_name, signature_constants.CLASSIFY_OUTPUT_CLASSES, signature_def) _add_output_to_signature_def(classification_signature.scores.tensor_name, signature_constants.CLASSIFY_OUTPUT_SCORES, signature_def) else: raise RuntimeError("Only classification and regression default signatures " "are supported for up-conversion. %s is not " "supported" % default_signature.WhichOneof("type")) return signature_def
Example #12
Source File: bundle_shim.py From lambda-packs with MIT License | 4 votes |
def _convert_default_signature_to_signature_def(signatures): """Convert default signature to object of type SignatureDef. Args: signatures: object of type manifest_pb2.Signatures() Returns: object of type SignatureDef which contains a converted version of default signature from input signatures object Returns None if signature is of generic type because it cannot be converted to SignatureDef. """ default_signature = signatures.default_signature signature_def = meta_graph_pb2.SignatureDef() if default_signature.WhichOneof("type") == "regression_signature": regression_signature = default_signature.regression_signature signature_def.method_name = signature_constants.REGRESS_METHOD_NAME _add_input_to_signature_def(regression_signature.input.tensor_name, signature_constants.REGRESS_INPUTS, signature_def) _add_output_to_signature_def(regression_signature.output.tensor_name, signature_constants.REGRESS_OUTPUTS, signature_def) elif default_signature.WhichOneof("type") == "classification_signature": classification_signature = default_signature.classification_signature signature_def.method_name = signature_constants.CLASSIFY_METHOD_NAME _add_input_to_signature_def(classification_signature.input.tensor_name, signature_constants.CLASSIFY_INPUTS, signature_def) _add_output_to_signature_def(classification_signature.classes.tensor_name, signature_constants.CLASSIFY_OUTPUT_CLASSES, signature_def) _add_output_to_signature_def(classification_signature.scores.tensor_name, signature_constants.CLASSIFY_OUTPUT_SCORES, signature_def) else: logging.error("Only classification and regression default signatures " "are supported for up-conversion. %s is not " "supported" % default_signature.WhichOneof("type")) return None return signature_def
Example #13
Source File: bundle_shim_test.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def testConvertSignaturesToSignatureDefs(self): base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH) meta_graph_filename = os.path.join(base_path, constants.META_GRAPH_DEF_FILENAME) metagraph_def = meta_graph.read_meta_graph_file(meta_graph_filename) default_signature_def, named_signature_def = ( bundle_shim._convert_signatures_to_signature_defs(metagraph_def)) self.assertEqual(default_signature_def.method_name, signature_constants.REGRESS_METHOD_NAME) self.assertEqual(len(default_signature_def.inputs), 1) self.assertEqual(len(default_signature_def.outputs), 1) self.assertProtoEquals( default_signature_def.inputs[signature_constants.REGRESS_INPUTS], meta_graph_pb2.TensorInfo(name="tf_example:0")) self.assertProtoEquals( default_signature_def.outputs[signature_constants.REGRESS_OUTPUTS], meta_graph_pb2.TensorInfo(name="Identity:0")) self.assertEqual(named_signature_def.method_name, signature_constants.PREDICT_METHOD_NAME) self.assertEqual(len(named_signature_def.inputs), 1) self.assertEqual(len(named_signature_def.outputs), 1) self.assertProtoEquals( named_signature_def.inputs["x"], meta_graph_pb2.TensorInfo(name="x:0")) self.assertProtoEquals( named_signature_def.outputs["y"], meta_graph_pb2.TensorInfo(name="y:0")) # Now try default signature only collection_def = metagraph_def.collection_def signatures_proto = manifest_pb2.Signatures() signatures = collection_def[constants.SIGNATURES_KEY].any_list.value[0] signatures.Unpack(signatures_proto) named_only_signatures_proto = manifest_pb2.Signatures() named_only_signatures_proto.CopyFrom(signatures_proto) default_only_signatures_proto = manifest_pb2.Signatures() default_only_signatures_proto.CopyFrom(signatures_proto) default_only_signatures_proto.named_signatures.clear() default_only_signatures_proto.ClearField("named_signatures") metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[ 0].Pack(default_only_signatures_proto) default_signature_def, named_signature_def = ( bundle_shim._convert_signatures_to_signature_defs(metagraph_def)) self.assertEqual(default_signature_def.method_name, signature_constants.REGRESS_METHOD_NAME) self.assertEqual(named_signature_def, None) named_only_signatures_proto.ClearField("default_signature") metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[ 0].Pack(named_only_signatures_proto) default_signature_def, named_signature_def = ( bundle_shim._convert_signatures_to_signature_defs(metagraph_def)) self.assertEqual(named_signature_def.method_name, signature_constants.PREDICT_METHOD_NAME) self.assertEqual(default_signature_def, None)
Example #14
Source File: bundle_shim_test.py From keras-lambda with MIT License | 4 votes |
def testConvertSignaturesToSignatureDefs(self): base_path = test.test_src_dir_path(SESSION_BUNDLE_PATH) meta_graph_filename = os.path.join(base_path, constants.META_GRAPH_DEF_FILENAME) metagraph_def = meta_graph.read_meta_graph_file(meta_graph_filename) default_signature_def, named_signature_def = ( bundle_shim._convert_signatures_to_signature_defs(metagraph_def)) self.assertEqual(default_signature_def.method_name, signature_constants.REGRESS_METHOD_NAME) self.assertEqual(len(default_signature_def.inputs), 1) self.assertEqual(len(default_signature_def.outputs), 1) self.assertProtoEquals( default_signature_def.inputs[signature_constants.REGRESS_INPUTS], meta_graph_pb2.TensorInfo(name="tf_example:0")) self.assertProtoEquals( default_signature_def.outputs[signature_constants.REGRESS_OUTPUTS], meta_graph_pb2.TensorInfo(name="Identity:0")) self.assertEqual(named_signature_def.method_name, signature_constants.PREDICT_METHOD_NAME) self.assertEqual(len(named_signature_def.inputs), 1) self.assertEqual(len(named_signature_def.outputs), 1) self.assertProtoEquals( named_signature_def.inputs["x"], meta_graph_pb2.TensorInfo(name="x:0")) self.assertProtoEquals( named_signature_def.outputs["y"], meta_graph_pb2.TensorInfo(name="y:0")) # Now try default signature only collection_def = metagraph_def.collection_def signatures_proto = manifest_pb2.Signatures() signatures = collection_def[constants.SIGNATURES_KEY].any_list.value[0] signatures.Unpack(signatures_proto) named_only_signatures_proto = manifest_pb2.Signatures() named_only_signatures_proto.CopyFrom(signatures_proto) default_only_signatures_proto = manifest_pb2.Signatures() default_only_signatures_proto.CopyFrom(signatures_proto) default_only_signatures_proto.named_signatures.clear() default_only_signatures_proto.ClearField("named_signatures") metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[ 0].Pack(default_only_signatures_proto) default_signature_def, named_signature_def = ( bundle_shim._convert_signatures_to_signature_defs(metagraph_def)) self.assertEqual(default_signature_def.method_name, signature_constants.REGRESS_METHOD_NAME) self.assertEqual(named_signature_def, None) named_only_signatures_proto.ClearField("default_signature") metagraph_def.collection_def[constants.SIGNATURES_KEY].any_list.value[ 0].Pack(named_only_signatures_proto) default_signature_def, named_signature_def = ( bundle_shim._convert_signatures_to_signature_defs(metagraph_def)) self.assertEqual(named_signature_def.method_name, signature_constants.PREDICT_METHOD_NAME) self.assertEqual(default_signature_def, None)