Python config.result_dir() Examples
The following are 30
code examples of config.result_dir().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config
, or try the search function
.
Example #1
Source File: misc.py From disentangling_conditional_gans with MIT License | 7 votes |
def locate_result_subdir(run_id_or_result_subdir): if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir): return run_id_or_result_subdir searchdirs = [] searchdirs += [''] searchdirs += ['results'] searchdirs += ['networks'] for searchdir in searchdirs: dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir) dir = os.path.join(dir, str(run_id_or_result_subdir)) if os.path.isdir(dir): return dir prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir) dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*'))) dirs = [dir for dir in dirs if os.path.isdir(dir)] if len(dirs) == 1: return dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
Example #2
Source File: misc.py From interfacegan with MIT License | 6 votes |
def locate_run_dir(run_id_or_run_dir): if isinstance(run_id_or_run_dir, str): if os.path.isdir(run_id_or_run_dir): return run_id_or_run_dir converted = dnnlib.submission.submit.convert_path(run_id_or_run_dir) if os.path.isdir(converted): return converted run_dir_pattern = re.compile('^0*%s-' % str(run_id_or_run_dir)) for search_dir in ['']: full_search_dir = config.result_dir if search_dir == '' else os.path.normpath(os.path.join(config.result_dir, search_dir)) run_dir = os.path.join(full_search_dir, str(run_id_or_run_dir)) if os.path.isdir(run_dir): return run_dir run_dirs = sorted(glob.glob(os.path.join(full_search_dir, '*'))) run_dirs = [run_dir for run_dir in run_dirs if run_dir_pattern.match(os.path.basename(run_dir))] run_dirs = [run_dir for run_dir in run_dirs if os.path.isdir(run_dir)] if len(run_dirs) == 1: return run_dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_run_dir)
Example #3
Source File: util_scripts.py From interfacegan with MIT License | 6 votes |
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if png_prefix is None: png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-' random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) result_subdir = misc.create_result_subdir(config.result_dir, config.desc) for png_idx in range(num_pngs): print('Generating png %d / %d...' % (png_idx, num_pngs)) latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state) labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of random interpolations using a previously trained network. # To run, uncomment the appropriate line in config.py and launch train.py.
Example #4
Source File: misc.py From interfacegan with MIT License | 6 votes |
def locate_result_subdir(run_id_or_result_subdir): if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir): return run_id_or_result_subdir searchdirs = [] searchdirs += [''] searchdirs += ['results'] searchdirs += ['networks'] for searchdir in searchdirs: dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir) dir = os.path.join(dir, str(run_id_or_result_subdir)) if os.path.isdir(dir): return dir prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir) dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*'))) dirs = [dir for dir in dirs if os.path.isdir(dir)] if len(dirs) == 1: return dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
Example #5
Source File: misc.py From higan with MIT License | 6 votes |
def locate_run_dir(run_id_or_run_dir): if isinstance(run_id_or_run_dir, str): if os.path.isdir(run_id_or_run_dir): return run_id_or_run_dir converted = dnnlib.submission.submit.convert_path(run_id_or_run_dir) if os.path.isdir(converted): return converted run_dir_pattern = re.compile('^0*%s-' % str(run_id_or_run_dir)) for search_dir in ['']: full_search_dir = config.result_dir if search_dir == '' else os.path.normpath(os.path.join(config.result_dir, search_dir)) run_dir = os.path.join(full_search_dir, str(run_id_or_run_dir)) if os.path.isdir(run_dir): return run_dir run_dirs = sorted(glob.glob(os.path.join(full_search_dir, '*'))) run_dirs = [run_dir for run_dir in run_dirs if run_dir_pattern.match(os.path.basename(run_dir))] run_dirs = [run_dir for run_dir in run_dirs if os.path.isdir(run_dir)] if len(run_dirs) == 1: return run_dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_run_dir)
Example #6
Source File: util_scripts.py From higan with MIT License | 6 votes |
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if png_prefix is None: png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-' random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) result_subdir = misc.create_result_subdir(config.result_dir, config.desc) for png_idx in range(num_pngs): print('Generating png %d / %d...' % (png_idx, num_pngs)) latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state) labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of random interpolations using a previously trained network. # To run, uncomment the appropriate line in config.py and launch train.py.
Example #7
Source File: misc.py From higan with MIT License | 6 votes |
def locate_result_subdir(run_id_or_result_subdir): if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir): return run_id_or_result_subdir searchdirs = [] searchdirs += [''] searchdirs += ['results'] searchdirs += ['networks'] for searchdir in searchdirs: dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir) dir = os.path.join(dir, str(run_id_or_result_subdir)) if os.path.isdir(dir): return dir prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir) dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*'))) dirs = [dir for dir in dirs if os.path.isdir(dir)] if len(dirs) == 1: return dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
Example #8
Source File: train.py From Keras-progressive_growing_of_gans with MIT License | 6 votes |
def create_result_subdir(result_dir, run_desc): # Select run ID and create subdir. while True: run_id = 0 for fname in glob.glob(os.path.join(result_dir, '*')): try: fbase = os.path.basename(fname) ford = int(fbase[:fbase.find('-')]) run_id = max(run_id, ford + 1) except ValueError: pass result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, run_desc)) try: os.makedirs(result_subdir) break except OSError: if os.path.isdir(result_subdir): continue raise print ("Saving results to", result_subdir) return result_subdir
Example #9
Source File: misc.py From Keras-progressive_growing_of_gans with MIT License | 6 votes |
def locate_result_subdir(run_id): if isinstance(run_id, str) and os.path.isdir(run_id): return run_id searchdirs = [] searchdirs += ['.'] searchdirs += ['results'] searchdirs += ['networks'] import config for searchdir in searchdirs: dir = os.path.join(config.result_dir, searchdir, str(run_id)) if os.path.isdir(dir): return dir dirs = glob.glob(os.path.join(config.result_dir, searchdir, '%s-*' % str(run_id))) if len(dirs) == 1 and os.path.isdir(dirs[0]): return dirs[0] raise IOError('Cannot locate result subdir for run', run_id)
Example #10
Source File: util_scripts.py From transparent_latent_gan with MIT License | 6 votes |
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if png_prefix is None: png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-' random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) result_subdir = misc.create_result_subdir(config.result_dir, config.desc) for png_idx in range(num_pngs): print('Generating png %d / %d...' % (png_idx, num_pngs)) latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state) labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of random interpolations using a previously trained network. # To run, uncomment the appropriate line in config.py and launch train.py.
Example #11
Source File: util_scripts.py From disentangling_conditional_gans with MIT License | 6 votes |
def generate_fake_images(run_id, snapshot=None, grid_size=[1,1], num_pngs=1, image_shrink=1, png_prefix=None, random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if png_prefix is None: png_prefix = misc.get_id_string_for_network_pkl(network_pkl) + '-' random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) result_subdir = misc.create_result_subdir(config.result_dir, config.desc) for png_idx in range(num_pngs): print('Generating png %d / %d...' % (png_idx, num_pngs)) latents = misc.random_latents(np.prod(grid_size), Gs, random_state=random_state) labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) misc.save_image_grid(images, os.path.join(result_subdir, '%s%06d.png' % (png_prefix, png_idx)), [0,255], grid_size) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of random interpolations using a previously trained network. # To run, uncomment the appropriate line in config.py and launch train.py.
Example #12
Source File: misc.py From transparent_latent_gan with MIT License | 6 votes |
def locate_result_subdir(run_id_or_result_subdir): if isinstance(run_id_or_result_subdir, str) and os.path.isdir(run_id_or_result_subdir): return run_id_or_result_subdir searchdirs = [] searchdirs += [''] searchdirs += ['results'] searchdirs += ['networks'] for searchdir in searchdirs: dir = config.result_dir if searchdir == '' else os.path.join(config.result_dir, searchdir) dir = os.path.join(dir, str(run_id_or_result_subdir)) if os.path.isdir(dir): return dir prefix = '%03d' % run_id_or_result_subdir if isinstance(run_id_or_result_subdir, int) else str(run_id_or_result_subdir) dirs = sorted(glob.glob(os.path.join(config.result_dir, searchdir, prefix + '-*'))) dirs = [dir for dir in dirs if os.path.isdir(dir)] if len(dirs) == 1: return dirs[0] raise IOError('Cannot locate result subdir for run', run_id_or_result_subdir)
Example #13
Source File: run_metrics.py From higan with MIT License | 5 votes |
def main(): submit_config = dnnlib.SubmitConfig() # Which metrics to evaluate? metrics = [] metrics += [metric_base.fid50k] #metrics += [metric_base.ppl_zfull] #metrics += [metric_base.ppl_wfull] #metrics += [metric_base.ppl_zend] #metrics += [metric_base.ppl_wend] #metrics += [metric_base.ls] #metrics += [metric_base.dummy] # Which networks to evaluate them on? tasks = [] tasks += [EasyDict(run_func_name='run_metrics.run_pickle', network_pkl='https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ', dataset_args=EasyDict(tfrecord_dir='ffhq', shuffle_mb=0), mirror_augment=True)] # karras2019stylegan-ffhq-1024x1024.pkl #tasks += [EasyDict(run_func_name='run_metrics.run_snapshot', run_id=100, snapshot=25000)] #tasks += [EasyDict(run_func_name='run_metrics.run_all_snapshots', run_id=100)] # How many GPUs to use? submit_config.num_gpus = 1 #submit_config.num_gpus = 2 #submit_config.num_gpus = 4 #submit_config.num_gpus = 8 # Execute. submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(config.result_dir) submit_config.run_dir_ignore += config.run_dir_ignore for task in tasks: for metric in metrics: submit_config.run_desc = '%s-%s' % (task.run_func_name, metric.name) if task.run_func_name.endswith('run_snapshot'): submit_config.run_desc += '-%s-%s' % (task.run_id, task.snapshot) if task.run_func_name.endswith('run_all_snapshots'): submit_config.run_desc += '-%s' % task.run_id submit_config.run_desc += '-%dgpu' % submit_config.num_gpus dnnlib.submit_run(submit_config, metric_args=metric, **task) #----------------------------------------------------------------------------
Example #14
Source File: misc.py From disentangling_conditional_gans with MIT License | 5 votes |
def create_result_subdir(result_dir, desc): # Select run ID and create subdir. while True: run_id = 0 for fname in glob.glob(os.path.join(result_dir, '*')): try: fbase = os.path.basename(fname) ford = int(fbase[:fbase.find('-')]) run_id = max(run_id, ford + 1) except ValueError: pass result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc)) try: os.makedirs(result_subdir) break except OSError: if os.path.isdir(result_subdir): continue raise print("Saving results to", result_subdir) set_output_log_file(os.path.join(result_subdir, 'log.txt')) # Export config. try: with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout: for k, v in sorted(config.__dict__.items()): if not k.startswith('_'): fout.write("%s = %s\n" % (k, str(v))) except: pass return result_subdir
Example #15
Source File: pretrained_example.py From interfacegan with MIT License | 5 votes |
def main(): # Initialize TensorFlow. tflib.init_tf() # Load pre-trained network. url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f: _G, _D, Gs = pickle.load(f) # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run. # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run. # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot. # Print network details. Gs.print_layers() # Pick latent vector. rnd = np.random.RandomState(5) latents = rnd.randn(1, Gs.input_shape[1]) # Generate image. fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt) # Save image. os.makedirs(config.result_dir, exist_ok=True) png_filename = os.path.join(config.result_dir, 'example.png') PIL.Image.fromarray(images[0], 'RGB').save(png_filename)
Example #16
Source File: run_metrics.py From interfacegan with MIT License | 5 votes |
def main(): submit_config = dnnlib.SubmitConfig() # Which metrics to evaluate? metrics = [] metrics += [metric_base.fid50k] #metrics += [metric_base.ppl_zfull] #metrics += [metric_base.ppl_wfull] #metrics += [metric_base.ppl_zend] #metrics += [metric_base.ppl_wend] #metrics += [metric_base.ls] #metrics += [metric_base.dummy] # Which networks to evaluate them on? tasks = [] tasks += [EasyDict(run_func_name='run_metrics.run_pickle', network_pkl='https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ', dataset_args=EasyDict(tfrecord_dir='ffhq', shuffle_mb=0), mirror_augment=True)] # karras2019stylegan-ffhq-1024x1024.pkl #tasks += [EasyDict(run_func_name='run_metrics.run_snapshot', run_id=100, snapshot=25000)] #tasks += [EasyDict(run_func_name='run_metrics.run_all_snapshots', run_id=100)] # How many GPUs to use? submit_config.num_gpus = 1 #submit_config.num_gpus = 2 #submit_config.num_gpus = 4 #submit_config.num_gpus = 8 # Execute. submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(config.result_dir) submit_config.run_dir_ignore += config.run_dir_ignore for task in tasks: for metric in metrics: submit_config.run_desc = '%s-%s' % (task.run_func_name, metric.name) if task.run_func_name.endswith('run_snapshot'): submit_config.run_desc += '-%s-%s' % (task.run_id, task.snapshot) if task.run_func_name.endswith('run_all_snapshots'): submit_config.run_desc += '-%s' % task.run_id submit_config.run_desc += '-%dgpu' % submit_config.num_gpus dnnlib.submit_run(submit_config, metric_args=metric, **task) #----------------------------------------------------------------------------
Example #17
Source File: generate_figures.py From interfacegan with MIT License | 5 votes |
def main(): tflib.init_tf() os.makedirs(config.result_dir, exist_ok=True) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure02-uncurated-ffhq.png'), load_Gs(url_ffhq), cx=0, cy=0, cw=1024, ch=1024, rows=3, lods=[0,1,2,2,3,3], seed=5) draw_style_mixing_figure(os.path.join(config.result_dir, 'figure03-style-mixing.png'), load_Gs(url_ffhq), w=1024, h=1024, src_seeds=[639,701,687,615,2268], dst_seeds=[888,829,1898,1733,1614,845], style_ranges=[range(0,4)]*3+[range(4,8)]*2+[range(8,18)]) draw_noise_detail_figure(os.path.join(config.result_dir, 'figure04-noise-detail.png'), load_Gs(url_ffhq), w=1024, h=1024, num_samples=100, seeds=[1157,1012]) draw_noise_components_figure(os.path.join(config.result_dir, 'figure05-noise-components.png'), load_Gs(url_ffhq), w=1024, h=1024, seeds=[1967,1555], noise_ranges=[range(0, 18), range(0, 0), range(8, 18), range(0, 8)], flips=[1]) draw_truncation_trick_figure(os.path.join(config.result_dir, 'figure08-truncation-trick.png'), load_Gs(url_ffhq), w=1024, h=1024, seeds=[91,388], psis=[1, 0.7, 0.5, 0, -0.5, -1]) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure10-uncurated-bedrooms.png'), load_Gs(url_bedrooms), cx=0, cy=0, cw=256, ch=256, rows=5, lods=[0,0,1,1,2,2,2], seed=0) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure11-uncurated-cars.png'), load_Gs(url_cars), cx=0, cy=64, cw=512, ch=384, rows=4, lods=[0,1,2,2,3,3], seed=2) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure12-uncurated-cats.png'), load_Gs(url_cats), cx=0, cy=0, cw=256, ch=256, rows=5, lods=[0,0,1,1,2,2,2], seed=1) #----------------------------------------------------------------------------
Example #18
Source File: util_scripts.py From disentangling_conditional_gans with MIT License | 5 votes |
def generate_interpolation_video(run_id, snapshot=None, grid_size=[1,1], image_shrink=1, image_zoom=1, duration_sec=60.0, smoothing_sec=1.0, mp4=None, mp4_fps=30, mp4_codec='libx265', mp4_bitrate='16M', random_seed=1000, minibatch_size=8): network_pkl = misc.locate_network_pkl(run_id, snapshot) if mp4 is None: mp4 = misc.get_id_string_for_network_pkl(network_pkl) + '-lerp.mp4' num_frames = int(np.rint(duration_sec * mp4_fps)) random_state = np.random.RandomState(random_seed) print('Loading network from "%s"...' % network_pkl) G, D, Gs = misc.load_network_pkl(run_id, snapshot) print('Generating latent vectors...') shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component] all_latents = random_state.randn(*shape).astype(np.float32) all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap') all_latents /= np.sqrt(np.mean(np.square(all_latents))) # Frame generation func for moviepy. def make_frame(t): frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1)) latents = all_latents[frame_idx] labels = np.zeros([latents.shape[0], 0], np.float32) images = Gs.run(latents, labels, minibatch_size=minibatch_size, num_gpus=config.num_gpus, out_mul=127.5, out_add=127.5, out_shrink=image_shrink, out_dtype=np.uint8) grid = misc.create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC if image_zoom > 1: grid = scipy.ndimage.zoom(grid, [image_zoom, image_zoom, 1], order=0) if grid.shape[2] == 1: grid = grid.repeat(3, 2) # grayscale => RGB return grid # Generate video. import moviepy.editor # pip install moviepy result_subdir = misc.create_result_subdir(config.result_dir, config.desc) moviepy.editor.VideoClip(make_frame, duration=duration_sec).write_videofile(os.path.join(result_subdir, mp4), fps=mp4_fps, codec='libx264', bitrate=mp4_bitrate) open(os.path.join(result_subdir, '_done.txt'), 'wt').close() #---------------------------------------------------------------------------- # Generate MP4 video of training progress for a previous training run. # To run, uncomment the appropriate line in config.py and launch train.py.
Example #19
Source File: misc.py From interfacegan with MIT License | 5 votes |
def create_result_subdir(result_dir, desc): # Select run ID and create subdir. while True: run_id = 0 for fname in glob.glob(os.path.join(result_dir, '*')): try: fbase = os.path.basename(fname) ford = int(fbase[:fbase.find('-')]) run_id = max(run_id, ford + 1) except ValueError: pass result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc)) try: os.makedirs(result_subdir) break except OSError: if os.path.isdir(result_subdir): continue raise print("Saving results to", result_subdir) set_output_log_file(os.path.join(result_subdir, 'log.txt')) # Export config. try: with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout: for k, v in sorted(config.__dict__.items()): if not k.startswith('_'): fout.write("%s = %s\n" % (k, str(v))) except: pass return result_subdir
Example #20
Source File: frechet_inception_distance.py From interfacegan with MIT License | 5 votes |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): import config self.network_dir = os.path.join(config.result_dir, '_inception_fid') self.network_file = check_or_download_inception(self.network_dir) self.sess = tf.get_default_session() create_inception_graph(self.network_file)
Example #21
Source File: inception_score.py From interfacegan with MIT License | 5 votes |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): import config globals()['MODEL_DIR'] = os.path.join(config.result_dir, '_inception') self.sess = tf.get_default_session() _init_inception()
Example #22
Source File: pretrained_example.py From higan with MIT License | 5 votes |
def main(): # Initialize TensorFlow. tflib.init_tf() # Load pre-trained network. url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f: _G, _D, Gs = pickle.load(f) # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run. # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run. # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot. # Print network details. Gs.print_layers() # Pick latent vector. rnd = np.random.RandomState(5) latents = rnd.randn(1, Gs.input_shape[1]) # Generate image. fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt) # Save image. os.makedirs(config.result_dir, exist_ok=True) png_filename = os.path.join(config.result_dir, 'example.png') PIL.Image.fromarray(images[0], 'RGB').save(png_filename)
Example #23
Source File: generate_figures.py From higan with MIT License | 5 votes |
def main(): tflib.init_tf() os.makedirs(config.result_dir, exist_ok=True) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure02-uncurated-ffhq.png'), load_Gs(url_ffhq), cx=0, cy=0, cw=1024, ch=1024, rows=3, lods=[0,1,2,2,3,3], seed=5) draw_style_mixing_figure(os.path.join(config.result_dir, 'figure03-style-mixing.png'), load_Gs(url_ffhq), w=1024, h=1024, src_seeds=[639,701,687,615,2268], dst_seeds=[888,829,1898,1733,1614,845], style_ranges=[range(0,4)]*3+[range(4,8)]*2+[range(8,18)]) draw_noise_detail_figure(os.path.join(config.result_dir, 'figure04-noise-detail.png'), load_Gs(url_ffhq), w=1024, h=1024, num_samples=100, seeds=[1157,1012]) draw_noise_components_figure(os.path.join(config.result_dir, 'figure05-noise-components.png'), load_Gs(url_ffhq), w=1024, h=1024, seeds=[1967,1555], noise_ranges=[range(0, 18), range(0, 0), range(8, 18), range(0, 8)], flips=[1]) draw_truncation_trick_figure(os.path.join(config.result_dir, 'figure08-truncation-trick.png'), load_Gs(url_ffhq), w=1024, h=1024, seeds=[91,388], psis=[1, 0.7, 0.5, 0, -0.5, -1]) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure10-uncurated-bedrooms.png'), load_Gs(url_bedrooms), cx=0, cy=0, cw=256, ch=256, rows=5, lods=[0,0,1,1,2,2,2], seed=0) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure11-uncurated-cars.png'), load_Gs(url_cars), cx=0, cy=64, cw=512, ch=384, rows=4, lods=[0,1,2,2,3,3], seed=2) draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure12-uncurated-cats.png'), load_Gs(url_cats), cx=0, cy=0, cw=256, ch=256, rows=5, lods=[0,0,1,1,2,2,2], seed=1) #----------------------------------------------------------------------------
Example #24
Source File: experiment.py From RL-Surgical-Gesture-Segmentation with MIT License | 5 votes |
def experiment_tcn(): from config import result_dir, split_num, tcn_run_num, dataset_name if dataset_name in ['JIGSAWS_K', 'JIGSAWS_N']: feature_types = ['sensor'] elif dataset_name == 'GTEA': feature_types = ['visual'] else: feature_types = ['sensor', 'visual'] #################################################### for feature_type in feature_types: tcn_cmd = 'python3 tcn_main.py --feature_type {}'.format(feature_type) Popen(tcn_cmd, shell=True).wait() #os.system(tcn_cmd) # Get Averaged Results: TCN template = 'tcn_result_{}_run_{}.npy' tcn_result = np.zeros((tcn_run_num, split_num, 6)) for tcn_run_idx in range(1, 1 + tcn_run_num): run_result_file = template.format(feature_type, tcn_run_idx) run_result_file = os.path.join(result_dir, run_result_file) tcn_result[tcn_run_idx-1,:,:] = np.load(run_result_file) os.remove(run_result_file) tcn_result_file = 'tcn_avg_result_{}.npy'.format(feature_type) tcn_result_file = os.path.join(result_dir, tcn_result_file) #np.save(tcn_result_file, tcn_result.mean(0).mean(0)) np.save(tcn_result_file, tcn_result)
Example #25
Source File: misc.py From higan with MIT License | 5 votes |
def create_result_subdir(result_dir, desc): # Select run ID and create subdir. while True: run_id = 0 for fname in glob.glob(os.path.join(result_dir, '*')): try: fbase = os.path.basename(fname) ford = int(fbase[:fbase.find('-')]) run_id = max(run_id, ford + 1) except ValueError: pass result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc)) try: os.makedirs(result_subdir) break except OSError: if os.path.isdir(result_subdir): continue raise print("Saving results to", result_subdir) set_output_log_file(os.path.join(result_subdir, 'log.txt')) # Export config. try: with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout: for k, v in sorted(config.__dict__.items()): if not k.startswith('_'): fout.write("%s = %s\n" % (k, str(v))) except: pass return result_subdir
Example #26
Source File: frechet_inception_distance.py From higan with MIT License | 5 votes |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): import config self.network_dir = os.path.join(config.result_dir, '_inception_fid') self.network_file = check_or_download_inception(self.network_dir) self.sess = tf.get_default_session() create_inception_graph(self.network_file)
Example #27
Source File: inception_score.py From higan with MIT License | 5 votes |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): import config globals()['MODEL_DIR'] = os.path.join(config.result_dir, '_inception') self.sess = tf.get_default_session() _init_inception()
Example #28
Source File: inception_score.py From transparent_latent_gan with MIT License | 5 votes |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): import config globals()['MODEL_DIR'] = os.path.join(config.result_dir, '_inception') self.sess = tf.get_default_session() _init_inception()
Example #29
Source File: frechet_inception_distance.py From transparent_latent_gan with MIT License | 5 votes |
def __init__(self, num_images, image_shape, image_dtype, minibatch_size): import config self.network_dir = os.path.join(config.result_dir, '_inception_fid') self.network_file = check_or_download_inception(self.network_dir) self.sess = tf.get_default_session() create_inception_graph(self.network_file)
Example #30
Source File: misc.py From transparent_latent_gan with MIT License | 5 votes |
def create_result_subdir(result_dir, desc): # Select run ID and create subdir. while True: run_id = 0 for fname in glob.glob(os.path.join(result_dir, '*')): try: fbase = os.path.basename(fname) ford = int(fbase[:fbase.find('-')]) run_id = max(run_id, ford + 1) except ValueError: pass result_subdir = os.path.join(result_dir, '%03d-%s' % (run_id, desc)) try: os.makedirs(result_subdir) break except OSError: if os.path.isdir(result_subdir): continue raise print("Saving results to", result_subdir) set_output_log_file(os.path.join(result_subdir, 'log.txt')) # Export config. try: with open(os.path.join(result_subdir, 'config.txt'), 'wt') as fout: for k, v in sorted(config.__dict__.items()): if not k.startswith('_'): fout.write("%s = %s\n" % (k, str(v))) except: pass return result_subdir