Python config.DEFAULT_MODEL_PATH Examples
The following are 14
code examples of config.DEFAULT_MODEL_PATH().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config
, or try the search function
.
Example #1
Source File: model.py From MAX-Question-Answering with Apache License 2.0 | 6 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) # Parameters for inference (need to be the same values the model was trained with) self.max_seq_length = 512 self.doc_stride = 128 self.max_query_length = 64 self.max_answer_length = 30 # Initialize the tokenizer self.tokenizer = FullTokenizer( vocab_file='assets/vocab.txt', do_lower_case=True) self.predict_fn = predictor.from_saved_model(DEFAULT_MODEL_PATH) logger.info('Loaded model')
Example #2
Source File: model.py From MAX-Image-Colorizer with Apache License 2.0 | 6 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) sess = tf.Session(graph=tf.Graph()) # Load the graph model_graph_def = sm.loader.load(sess, [sm.tag_constants.SERVING], path) sig_def = model_graph_def.signature_def[sm.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] input_name = sig_def.inputs['input_images'].name output_name = sig_def.outputs['output_images'].name # Set up instance variables and required inputs for inference self.sess = sess self.model_graph_def = model_graph_def self.output_tensor = sess.graph.get_tensor_by_name(output_name) self.input_name = input_name self.output_name = output_name logger.info('Loaded model')
Example #3
Source File: model.py From MAX-Image-Caption-Generator with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): # TODO Replace this part with SavedModel g = tf.Graph() with g.as_default(): model = inference_wrapper.InferenceWrapper() restore_fn = model.build_graph_from_config(configuration.ModelConfig(), path) g.finalize() self.model = model sess = tf.Session(graph=g) # Load the model from checkpoint. restore_fn(sess) self.sess = sess
Example #4
Source File: model.py From MAX-ResNet-50 with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) clear_session() self.model = models.load_model( os.path.join(path, 'resnet50.h5')) # this seems to be required to make Keras models play nicely with threads self.model._make_predict_function() logger.info('Loaded model: {}'.format(self.model.name)) with open(os.path.join(DEFAULT_MODEL_PATH, 'class_index.json')) as class_file: self.classes = json.load(class_file)
Example #5
Source File: model.py From MAX-Text-Summarizer with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: %s...', path) self.log_dir = TemporaryDirectory() self.p_summarize = Popen(['python', 'core/getpoint/run_summarization.py', '--mode=decode', # nosec - B603 '--ckpt_dir={}'.format(ASSET_DIR), '--vocab_path={}'.format(DEFAULT_VOCAB_PATH), '--log_root={}'.format(self.log_dir.name)], stdin=PIPE, stdout=PIPE)
Example #6
Source File: model.py From MAX-Named-Entity-Tagger with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) # load assets first to enable model definition self._load_assets(path) # Loading the tf SavedModel self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph) tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], DEFAULT_MODEL_PATH) self.word_ids_tensor = self.sess.graph.get_tensor_by_name('word_input:0') self.char_ids_tensor = self.sess.graph.get_tensor_by_name('char_input:0') self.output_tensor = self.sess.graph.get_tensor_by_name('predict_output/truediv:0')
Example #7
Source File: model.py From MAX-Skeleton with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) # Load the graph # Set up instance variables and required inputs for inference logger.info('Loaded model')
Example #8
Source File: model.py From MAX-Weather-Forecaster with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading models from: {}...'.format(path)) self.models = {} for model in MODELS: logger.info('Loading model: {}'.format(model)) self.models[model] = SingleModelWrapper(model=model, path=path) logger.info('Loaded all models')
Example #9
Source File: model.py From MAX-Toxic-Comment-Classifier with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): """Instantiate the BERT model.""" logger.info('Loading model from: {}...'.format(path)) # Load the model # 1. set the appropriate parameters self.eval_batch_size = 64 self.max_seq_length = 256 self.do_lower_case = True # 2. Initialize the PyTorch model model_state_dict = torch.load(DEFAULT_MODEL_PATH+'pytorch_model.bin', map_location='cpu') self.tokenizer = BertTokenizer.from_pretrained(DEFAULT_MODEL_PATH, do_lower_case=self.do_lower_case) self.model = BertForMultiLabelSequenceClassification.from_pretrained(DEFAULT_MODEL_PATH, num_labels=len(LABEL_LIST), state_dict=model_state_dict) self.device = torch.device("cpu") self.model.to(self.device) # 3. Set the layers to evaluation mode self.model.eval() logger.info('Loaded model')
Example #10
Source File: model.py From MAX-Review-Text-Generator with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH, model_file=DEFAULT_MODEL_FILE): logger.info('Loading model from: {}...'.format(path)) model_path = '{}/{}'.format(path, model_file) clear_session() self.graph = tf.Graph() with self.graph.as_default(): self.model = models.load_model(model_path) logger.info('Loaded model: {}'.format(self.model.name)) self._load_assets(path)
Example #11
Source File: model.py From MAX-Image-Resolution-Enhancer with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) # Initialize the SRGAN controller self.SRGAN = SRGAN_controller(checkpoint=DEFAULT_MODEL_PATH) logger.info('Loaded model')
Example #12
Source File: model.py From MAX-Breast-Cancer-Mitosis-Detector with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) self.sess = tensorflow.keras.backend.get_session() base_model = tensorflow.keras.models.load_model(path, compile=False) probs = tensorflow.keras.layers.Activation('sigmoid', name="sigmoid")(base_model.output) self.model = tensorflow.keras.models.Model(inputs=base_model.input, outputs=probs) self.input_tensor = self.model.input self.output_tensor = self.model.output
Example #13
Source File: model.py From MAX-Text-Sentiment-Classifier with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) self.max_seq_length = 128 self.do_lower_case = True # Set Logging verbosity tf.logging.set_verbosity(tf.logging.INFO) # Loading the tf Graph self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph) tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], DEFAULT_MODEL_PATH) # Validate init_checkpoint tokenization.validate_case_matches_checkpoint(self.do_lower_case, DEFAULT_MODEL_PATH) # Initialize the dataprocessor self.processor = MAXAPIProcessor() # Get the labels self.label_list = self.processor.get_labels() # Initialize the tokenizer self.tokenizer = tokenization.FullTokenizer( vocab_file=f'{DEFAULT_MODEL_PATH}/vocab.txt', do_lower_case=self.do_lower_case) logger.info('Loaded model')
Example #14
Source File: model.py From MAX-Sports-Video-Classifier with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH, model_dir=DEFAULT_MODEL_DIR): logger.info('Loading model from: {}...'.format(path)) sess = tf.Session(graph=tf.Graph()) # load the graph saved_model_path = '{}/{}'.format(path, model_dir) model_graph_def = tf.saved_model.load(sess, [tf.saved_model.tag_constants.SERVING], saved_model_path) sig_def = model_graph_def.signature_def[tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] input_name = sig_def.inputs['inputs'].name output_name = sig_def.outputs['scores'].name # Load labels from file label_file = codecs.open('./{}/labels.txt'.format(path), "r", encoding="utf-8") labels = [label.strip('\n') for label in label_file.readlines()] self.labels = labels # set up instance variables and required inputs for inference self.sess = sess self.model_graph_def = model_graph_def self.output_tensor = sess.graph.get_tensor_by_name(output_name) self.input_name = input_name self.output_name = output_name self.means = np.load('./{}/crop_mean.npy'.format(path)).reshape( [NUM_FRAMES_PER_CLIP, CROP_SIZE, CROP_SIZE, CHANNELS]) logger.info('Loaded model')