Python config.load_config() Examples
The following are 27
code examples of config.load_config().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config
, or try the search function
.
Example #1
Source File: test_pixel_link.py From HUAWEIOCR-2019 with MIT License | 6 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.eval_image_height, FLAGS.eval_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) config.load_config(FLAGS.checkpoint_path) config.init_config(image_shape, batch_size = 1, pixel_conf_threshold = 0.8, link_conf_threshold = 0.8, num_gpus = 1, ) util.proc.set_proc_name('test_pixel_link_on'+ '_' + FLAGS.dataset_name)
Example #2
Source File: test_pixel_link.py From pixel_link with MIT License | 6 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.eval_image_height, FLAGS.eval_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) config.load_config(FLAGS.checkpoint_path) config.init_config(image_shape, batch_size = 1, pixel_conf_threshold = 0.8, link_conf_threshold = 0.8, num_gpus = 1, ) util.proc.set_proc_name('test_pixel_link_on'+ '_' + FLAGS.dataset_name)
Example #3
Source File: Recordurbate.py From Recordurbate with GNU General Public License v3.0 | 6 votes |
def add(): if not check_num_args(3): return # load config and others config = Config.load_config() username = sys.argv[2].lower() idx = Config.find_in_config(username, config) # if already added if idx: print("{} has already been added".format(username)) return # add and save config["streamers"].append(username) if Config.save_config(config): print("{} has been added".format(username))
Example #4
Source File: Recordurbate.py From Recordurbate with GNU General Public License v3.0 | 6 votes |
def remove(): if not check_num_args(3): return # load config and others config = Config.load_config() username = sys.argv[2].lower() idx = Config.find_in_config(username, config) # if not in list if idx == None: print("{} hasn't been added".format(username)) return # delete and save del config["streamers"][idx] if Config.save_config(config): print("{} has been deleted".format(username))
Example #5
Source File: Recordurbate.py From Recordurbate with GNU General Public License v3.0 | 6 votes |
def import_streamers(): if not check_num_args(3): return # load config config = Config.load_config() # open and loop file with open(sys.argv[2], "r") as f: for line in f: username = line.rstrip() # if already in, print, else append if username in config["streamers"]: print("{} has already been added".format(username)) else: config["streamers"].append(username) # save config if Config.save_config(config): print("Streamers imported, Config saved")
Example #6
Source File: Recordurbate.py From Recordurbate with GNU General Public License v3.0 | 6 votes |
def export_streamers(): if len(sys.argv) not in (2, 3): return usage() # load config config = Config.load_config() export_location = config["default_export_location"] # check export loc if len(sys.argv) == 3: export_location = sys.argv[2] # write file with open(export_location, "w") as f: for streamer in config["streamers"]: f.write(streamer + "\n") print("Written streamers to file")
Example #7
Source File: storage.py From DistributedDeepLearning with MIT License | 6 votes |
def create_container(c): """Creates container based on the parameters found in the .env file """ logger = logging.getLogger(__name__) env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") if _container_exists(c, container_name, account_name, account_key): logger.info(f"Container already exists") return None cmd = ( f"az storage container create" f" --account-name {account_name}" f" --account-key {account_key}" f" --name {container_name}" ) c.run(cmd)
Example #8
Source File: gui_inference_viewer.py From image-segmentation with MIT License | 6 votes |
def __init__(self, image_dir, config_path, weights_path, threshold=0.5, class_names=None): super(GuiInferenceViewer, self).__init__('Inference Viewer') assert os.path.isdir(image_dir), 'No such directory: {}'.format(image_dir) self.threshold = threshold self.class_names = class_names # Get the list of image files self.image_files = sorted([os.path.join(image_dir, x) for x in os.listdir(image_dir) if x.lower().endswith('.jpg') or x.lower().endswith('.png') or x.lower().endswith('.bmp') ]) self.num_images = len(self.image_files) self.model = get_model_wrapper(load_config(config_path)) if weights_path: self.model.load_weights(weights_path) else: print('No weights path provided. Will use randomly initialized weights') self.create_slider() self.create_textbox() self.display()
Example #9
Source File: uploader.py From mapillary_tools with BSD 2-Clause "Simplified" License | 6 votes |
def authenticate_user(user_name): user_items = None if os.path.isfile(GLOBAL_CONFIG_FILEPATH): global_config_object = config.load_config(GLOBAL_CONFIG_FILEPATH) if user_name in global_config_object.sections(): user_items = config.load_user(global_config_object, user_name) return user_items user_items = prompt_user_for_user_items(user_name) if not user_items: return None try: config.create_config(GLOBAL_CONFIG_FILEPATH) except Exception as e: print("Failed to create authentication config file due to {}".format(e)) sys.exit(1) config.update_config( GLOBAL_CONFIG_FILEPATH, user_name, user_items) return user_items
Example #10
Source File: image.py From DistributedDeepLearning with MIT License | 5 votes |
def upload_validation_data(c): """Upload validation data to container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") upload_data_from_to( c, "validation", "/data/validation", container_name, account_name, account_key )
Example #11
Source File: uploader.py From mapillary_tools with BSD 2-Clause "Simplified" License | 5 votes |
def get_master_key(): master_key = "" if os.path.isfile(GLOBAL_CONFIG_FILEPATH): global_config_object = config.load_config(GLOBAL_CONFIG_FILEPATH) if "MAPAdmin" in global_config_object.sections(): admin_items = config.load_user(global_config_object, "MAPAdmin") if "MAPILLARY_SECRET_HASH" in admin_items: master_key = admin_items["MAPILLARY_SECRET_HASH"] else: create_config = raw_input( "Master upload key does not exist in your global Mapillary config file, set it now?") if create_config in ["y", "Y", "yes", "Yes"]: master_key = set_master_key() else: create_config = raw_input( "MAPAdmin section not in your global Mapillary config file, set it now?") if create_config in ["y", "Y", "yes", "Yes"]: master_key = set_master_key() else: create_config = raw_input( "Master upload key needs to be saved in the global Mapillary config file, which does not exist, create one now?") if create_config in ["y", "Y", "yes", "Yes"]: config.create_config(GLOBAL_CONFIG_FILEPATH) master_key = set_master_key() return master_key
Example #12
Source File: image.py From DistributedDeepLearning with MIT License | 5 votes |
def download_training(c): """Download training data from blob container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") download_data_from_to( c, "train", "/data/train", container_name, account_name, account_key )
Example #13
Source File: image.py From DistributedDeepLearning with MIT License | 5 votes |
def download_validation(c): """Download validation data from blob container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") download_data_from_to( c, "validation", "/data/validation", container_name, account_name, account_key )
Example #14
Source File: tfrecords.py From DistributedDeepLearning with MIT License | 5 votes |
def upload_validation_data(c): """Upload tfrecords validation data to container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") upload_data_from_to( c, "tfrecords/validation", "/data/tfrecords/validation", container_name, account_name, account_key, )
Example #15
Source File: tfrecords.py From DistributedDeepLearning with MIT License | 5 votes |
def download_training(c): """Download tfrecords training data from blob container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") download_data_from_to( c, "tfrecords/train", "/data/tfrecords/train", container_name, account_name, account_key, )
Example #16
Source File: tfrecords.py From DistributedDeepLearning with MIT License | 5 votes |
def download_validation(c): """Download tfrecords validation data from blob container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") download_data_from_to( c, "tfrecords/validation", "/data/tfrecords/validation", container_name, account_name, account_key, )
Example #17
Source File: train_pixel_link.py From HUAWEIOCR-2019 with MIT License | 5 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger( log_file = 'log_train_pixel_link_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.load_config(FLAGS.train_dir) config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
Example #18
Source File: image.py From DistributedDeepLearning with MIT License | 5 votes |
def upload_training_data(c): """Upload training data to container specified in .env file """ env_values = load_config() container_name = env_values.get("CONTAINER_NAME") account_name = env_values.get("ACCOUNT_NAME") account_key = env_values.get("ACCOUNT_KEY") upload_data_from_to( c, "train", "/data/train", container_name, account_name, account_key )
Example #19
Source File: train_pixel_link.py From pixel_link with MIT License | 5 votes |
def config_initialization(): # image shape and feature layers shape inference image_shape = (FLAGS.train_image_height, FLAGS.train_image_width) if not FLAGS.dataset_dir: raise ValueError('You must supply the dataset directory with --dataset_dir') tf.logging.set_verbosity(tf.logging.DEBUG) util.init_logger( log_file = 'log_train_pixel_link_%d_%d.log'%image_shape, log_path = FLAGS.train_dir, stdout = False, mode = 'a') config.load_config(FLAGS.train_dir) config.init_config(image_shape, batch_size = FLAGS.batch_size, weight_decay = FLAGS.weight_decay, num_gpus = FLAGS.num_gpus ) batch_size = config.batch_size batch_size_per_gpu = config.batch_size_per_gpu tf.summary.scalar('batch_size', batch_size) tf.summary.scalar('batch_size_per_gpu', batch_size_per_gpu) util.proc.set_proc_name('train_pixel_link_on'+ '_' + FLAGS.dataset_name) dataset = dataset_factory.get_dataset(FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir) config.print_config(FLAGS, dataset) return dataset
Example #20
Source File: uploader.py From mapillary_tools with BSD 2-Clause "Simplified" License | 5 votes |
def set_master_key(): config_object = config.load_config(GLOBAL_CONFIG_FILEPATH) section = "MAPAdmin" if section not in config_object.sections(): config_object.add_section(section) master_key = raw_input("Enter the master key : ") if master_key != "": config_object = config.set_user_items( config_object, section, {"MAPILLARY_SECRET_HASH": master_key}) config.save_config(config_object, GLOBAL_CONFIG_FILEPATH) return master_key
Example #21
Source File: app.py From pyethapp with BSD 3-Clause "New" or "Revised" License | 5 votes |
def app(ctx, alt_config, config_values, data_dir, log_config, bootstrap_node, log_json, mining_pct): # configure logging log_config = log_config or ':info' slogging.configure(log_config, log_json=log_json) # data dir default or from cli option data_dir = data_dir or konfig.default_data_dir konfig.setup_data_dir(data_dir) # if not available, sets up data_dir and required config log.info('using data in', path=data_dir) # prepare configuration # config files only contain required config (privkeys) and config different from the default if alt_config: # specified config file config = konfig.load_config(alt_config) else: # load config from default or set data_dir config = konfig.load_config(data_dir) config['data_dir'] = data_dir # add default config konfig.update_config_with_defaults(config, konfig.get_default_config([EthApp] + services)) # override values with values from cmd line for config_value in config_values: try: konfig.set_config_param(config, config_value) # check if this is part of the default config except ValueError: raise BadParameter('Config parameter must be of the form "a.b.c=d" where "a.b.c" ' 'specifies the parameter to set and d is a valid yaml value ' '(example: "-c jsonrpc.port=5000")') if bootstrap_node: config['discovery']['bootstrap_nodes'] = [bytes(bootstrap_node)] if mining_pct > 0: config['pow']['activated'] = True config['pow']['cpu_pct'] = int(min(100, mining_pct)) ctx.obj = {'config': config}
Example #22
Source File: converter.py From CROWN-IBP with BSD 2-Clause "Simplified" License | 5 votes |
def main(args): config = load_config(args) global_train_config = config["training_params"] models, model_names = config_modelloader_and_convert2mlp(config)
Example #23
Source File: Recordurbate.py From Recordurbate with GNU General Public License v3.0 | 5 votes |
def list_streamers(): if not check_num_args(2): return # load config, print streamers config = Config.load_config() print('Streamers in recording list:\n') for streamer in config['streamers']: print('- ' + streamer)
Example #24
Source File: conftest.py From aries-protocol-test-suite with Apache License 2.0 | 5 votes |
def pytest_configure(config): """ Load Test Suite Configuration. """ dirname = os.getcwd() config_path = config.getoption('suite_config') config_path = 'config.toml' if not config_path else config_path config_path = os.path.join(dirname, config_path) print( '\nAttempting to load configuration from file: %s\n' % config_path ) try: config.suite_config = load_config(config_path) except FileNotFoundError: config.suite_config = default() config.suite_config['save_path'] = config.getoption('save_path') # Override default terminal reporter for better test output when not capturing if config.getoption('capture') == 'no': reporter = config.pluginmanager.get_plugin('terminalreporter') agent_reporter = AgentTerminalReporter(config, sys.stdout) config.pluginmanager.unregister(reporter) config.pluginmanager.register(agent_reporter, 'terminalreporter') # Compile select regex and test regex if given select_regex = config.getoption('select') config.select_regex = re.compile(select_regex) if select_regex else None config.tests_regex = list(map( re.compile, config.suite_config['tests'] ))
Example #25
Source File: eval.py From CROWN-IBP with BSD 2-Clause "Simplified" License | 4 votes |
def main(args): config = load_config(args) global_eval_config = config["eval_params"] models, model_names = config_modelloader(config, load_pretrain = True) robust_errs = [] errs = [] for model, model_id, model_config in zip(models, model_names, config["models"]): # make a copy of global training config, and update per-model config eval_config = copy.deepcopy(global_eval_config) if "eval_params" in model_config: eval_config.update(model_config["eval_params"]) model = BoundSequential.convert(model, eval_config["method_params"]["bound_opts"]) model = model.cuda() # read training parameters from config file method = eval_config["method"] verbose = eval_config["verbose"] eps = eval_config["epsilon"] # parameters specific to a training method method_param = eval_config["method_params"] norm = float(eval_config["norm"]) train_data, test_data = config_dataloader(config, **eval_config["loader_params"]) model_name = get_path(config, model_id, "model", load = False) print(model_name) model_log = get_path(config, model_id, "eval_log") logger = Logger(open(model_log, "w")) logger.log("evaluation configurations:", eval_config) logger.log("Evaluating...") with torch.no_grad(): # evaluate robust_err, err = Train(model, 0, test_data, EpsilonScheduler("linear", 0, 0, eps, eps, 1), eps, norm, logger, verbose, False, None, method, **method_param) robust_errs.append(robust_err) errs.append(err) print('model robust errors (for robustly trained models, not valid for naturally trained models):') print(robust_errs) robust_errs = np.array(robust_errs) print('min: {:.4f}, max: {:.4f}, median: {:.4f}, mean: {:.4f}'.format(np.min(robust_errs), np.max(robust_errs), np.median(robust_errs), np.mean(robust_errs))) print('clean errors for models with min, max and median robust errors') i_min = np.argmin(robust_errs) i_max = np.argmax(robust_errs) i_median = np.argsort(robust_errs)[len(robust_errs) // 2] print('for min: {:.4f}, for max: {:.4f}, for median: {:.4f}'.format(errs[i_min], errs[i_max], errs[i_median])) print('model clean errors:') print(errs) print('min: {:.4f}, max: {:.4f}, median: {:.4f}, mean: {:.4f}'.format(np.min(errs), np.max(errs), np.median(errs), np.mean(errs)))
Example #26
Source File: __init__.py From Flask-Boost with MIT License | 4 votes |
def create_app(): """Create Flask app.""" config = load_config() app = Flask(__name__) app.config.from_object(config) # Proxy fix app.wsgi_app = ProxyFix(app.wsgi_app) # CSRF protect CsrfProtect(app) if app.debug or app.testing: DebugToolbarExtension(app) # Serve static files app.wsgi_app = SharedDataMiddleware(app.wsgi_app, { '/pages': os.path.join(app.config.get('PROJECT_PATH'), 'application/pages') }) else: # Log errors to stderr in production mode app.logger.addHandler(logging.StreamHandler()) app.logger.setLevel(logging.ERROR) # Enable Sentry if app.config.get('SENTRY_DSN'): from .utils.sentry import sentry sentry.init_app(app, dsn=app.config.get('SENTRY_DSN')) # Serve static files app.wsgi_app = SharedDataMiddleware(app.wsgi_app, { '/static': os.path.join(app.config.get('PROJECT_PATH'), 'output/static'), '/pkg': os.path.join(app.config.get('PROJECT_PATH'), 'output/pkg'), '/pages': os.path.join(app.config.get('PROJECT_PATH'), 'output/pages') }) # Register components register_db(app) register_routes(app) register_jinja(app) register_error_handle(app) register_hooks(app) return app
Example #27
Source File: __init__.py From learning-python with MIT License | 4 votes |
def create_app(): """Create Flask app.""" config = load_config() app = Flask(__name__) app.config.from_object(config) if not hasattr(app, 'production'): app.production = not app.debug and not app.testing # Proxy fix app.wsgi_app = ProxyFix(app.wsgi_app) # CSRF protect CsrfProtect(app) if app.debug or app.testing: DebugToolbarExtension(app) # Serve static files app.wsgi_app = SharedDataMiddleware(app.wsgi_app, { '/pages': os.path.join(app.config.get('PROJECT_PATH'), 'application/pages') }) else: # Log errors to stderr in production mode app.logger.addHandler(logging.StreamHandler()) app.logger.setLevel(logging.ERROR) # Enable Sentry if app.config.get('SENTRY_DSN'): from .utils.sentry import sentry sentry.init_app(app, dsn=app.config.get('SENTRY_DSN')) # Serve static files app.wsgi_app = SharedDataMiddleware(app.wsgi_app, { '/static': os.path.join(app.config.get('PROJECT_PATH'), 'output/static'), '/pkg': os.path.join(app.config.get('PROJECT_PATH'), 'output/pkg'), '/pages': os.path.join(app.config.get('PROJECT_PATH'), 'output/pages') }) # Register components register_db(app) register_routes(app) register_jinja(app) register_error_handle(app) register_hooks(app) return app