Python config.sample_rate() Examples
The following are 8
code examples of config.sample_rate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
config
, or try the search function
.
Example #1
Source File: features.py From dcase2019_task2 with MIT License | 6 votes |
def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax): '''Log mel feature extractor. Args: sample_rate: int window_size: int hop_size: int mel_bins: int fmin: int, minimum frequency of mel filter banks fmax: int, maximum frequency of mel filter banks ''' self.window_size = window_size self.hop_size = hop_size self.window_func = np.hanning(window_size) self.melW = librosa.filters.mel( sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax).T '''(n_fft // 2 + 1, mel_bins)'''
Example #2
Source File: prepare_data.py From music_transcription_MAPS with MIT License | 5 votes |
def write_audio(path, audio, sample_rate): """Write audio sequence to .wav file. Args: path: string, path to write out .wav file. data: ndarray, audio sequence to write out. sample_rate: int, sample rate to write out. Returns: None. """ soundfile.write(file=path, data=audio, samplerate=sample_rate)
Example #3
Source File: prepare_data.py From music_transcription_MAPS with MIT License | 5 votes |
def logmel(audio): """Calculate log Mel spectrogram of an audio sequence. Args: audio: 1darray, audio sequence. Returns: x: ndarray, log Mel spectrogram (n_time, n_freq) """ n_window = cfg.n_window n_overlap = cfg.n_overlap fs = cfg.sample_rate ham_win = np.hamming(n_window) [f, t, x] = signal.spectral.spectrogram( audio, window=ham_win, nperseg=n_window, noverlap=n_overlap, detrend=False, return_onesided=True, mode='magnitude') x = x.T if globals().get('melW') is None: global melW melW = librosa.filters.mel(sr=fs, n_fft=n_window, n_mels=229, fmin=0, fmax=fs / 2.) x = np.dot(x, melW.T) x = np.log(x + 1e-8) x = x.astype(np.float32) return x
Example #4
Source File: utils.py From Speech-Transformer with MIT License | 5 votes |
def extract_feature(input_file, feature='fbank', dim=80, cmvn=True, delta=False, delta_delta=False, window_size=25, stride=10, save_feature=None): y, sr = librosa.load(input_file, sr=sample_rate) yt, _ = librosa.effects.trim(y, top_db=20) yt = normalize(yt) ws = int(sr * 0.001 * window_size) st = int(sr * 0.001 * stride) if feature == 'fbank': # log-scaled feat = librosa.feature.melspectrogram(y=yt, sr=sr, n_mels=dim, n_fft=ws, hop_length=st) feat = np.log(feat + 1e-6) elif feature == 'mfcc': feat = librosa.feature.mfcc(y=yt, sr=sr, n_mfcc=dim, n_mels=26, n_fft=ws, hop_length=st) feat[0] = librosa.feature.rmse(yt, hop_length=st, frame_length=ws) else: raise ValueError('Unsupported Acoustic Feature: ' + feature) feat = [feat] if delta: feat.append(librosa.feature.delta(feat[0])) if delta_delta: feat.append(librosa.feature.delta(feat[0], order=2)) feat = np.concatenate(feat, axis=0) if cmvn: feat = (feat - feat.mean(axis=1)[:, np.newaxis]) / (feat.std(axis=1) + 1e-16)[:, np.newaxis] if save_feature is not None: tmp = np.swapaxes(feat, 0, 1).astype('float32') np.save(save_feature, tmp) return len(tmp) else: return np.swapaxes(feat, 0, 1).astype('float32')
Example #5
Source File: features.py From dcase2018_task1 with MIT License | 5 votes |
def __init__(self, sample_rate, window_size, overlap, mel_bins): self.window_size = window_size self.overlap = overlap self.ham_win = np.hamming(window_size) self.melW = librosa.filters.mel(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=50., fmax=sample_rate // 2).T
Example #6
Source File: features.py From dcase2018_task1 with MIT License | 5 votes |
def calculate_logmel(audio_path, sample_rate, feature_extractor): # Read audio (audio, fs) = read_audio(audio_path, target_fs=sample_rate) '''We do not divide the maximum value of an audio here because we assume the low energy of an audio may also contain information of a scene. ''' # Extract feature feature = feature_extractor.transform(audio) return feature
Example #7
Source File: prepare_data.py From dcase2017_task4_cvssp with MIT License | 5 votes |
def write_audio(path, audio, sample_rate): soundfile.write(file=path, data=audio, samplerate=sample_rate) # Create an empty folder
Example #8
Source File: prepare_data.py From music_transcription_MAPS with MIT License | 4 votes |
def calculate_features(args): """Calculate and write out features & ground truth notes of all songs in MUS directory of all pianos. """ dataset_dir = args.dataset_dir workspace = args.workspace feat_type = args.feat_type fs = cfg.sample_rate tr_pianos = cfg.tr_pianos te_pianos = cfg.te_pianos pitch_bgn = cfg.pitch_bgn pitch_fin = cfg.pitch_fin out_dir = os.path.join(workspace, "features", feat_type) create_folder(out_dir) # Calculate features for all 9 pianos. cnt = 0 for piano in tr_pianos + te_pianos: audio_dir = os.path.join(dataset_dir, piano, "MUS") wav_names = [na for na in os.listdir(audio_dir) if na.endswith('.wav')] for wav_na in wav_names: # Read audio. bare_na = os.path.splitext(wav_na)[0] wav_path = os.path.join(audio_dir, wav_na) (audio, _) = read_audio(wav_path, target_fs=fs) # Calculate feature. if feat_type == "spectrogram": x = spectrogram(audio) elif feat_type == "logmel": x = logmel(audio) else: raise Exception("Error!") # Read piano roll from txt file. (n_time, n_freq) = x.shape txt_path = os.path.join(audio_dir, "%s.txt" % bare_na) roll = txt_to_midi_roll(txt_path, max_fr_len=n_time) # (n_time, 128) y = roll[:, pitch_bgn : pitch_fin] # (n_time, 88) # Write out data. data = [x, y] out_path = os.path.join(out_dir, "%s.p" % bare_na) print(cnt, out_path, x.shape, y.shape) cPickle.dump(data, open(out_path, 'wb'), protocol=cPickle.HIGHEST_PROTOCOL) cnt += 1 ### Pack features.