Python object_detection.utils.object_detection_evaluation.ObjectDetectionEvaluation() Examples
The following are 30
code examples of object_detection.utils.object_detection_evaluation.ObjectDetectionEvaluation().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.object_detection_evaluation
, or try the search function
.
Example #1
Source File: object_detection_evaluation_test.py From open-solution-googleai-object-detection with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #2
Source File: object_detection_evaluation_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #3
Source File: object_detection_evaluation_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = "img1" groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = "img2" groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2) image_key3 = "img3" groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = "img2" detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #4
Source File: object_detection_evaluation_test.py From MBMD with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = "img1" groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = "img2" groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2) image_key3 = "img3" groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = "img2" detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #5
Source File: object_detection_evaluation_test.py From Elphas with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #6
Source File: object_detection_evaluation_test.py From Elphas with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #7
Source File: object_detection_evaluation_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #8
Source File: object_detection_evaluation_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #9
Source File: object_detection_evaluation_test.py From AniSeg with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #10
Source File: object_detection_evaluation_test.py From AniSeg with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #11
Source File: object_detection_evaluation_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #12
Source File: object_detection_evaluation_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #13
Source File: object_detection_evaluation_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #14
Source File: object_detection_evaluation_test.py From open-solution-googleai-object-detection with MIT License | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #15
Source File: object_detection_evaluation_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #16
Source File: object_detection_evaluation_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #17
Source File: object_detection_evaluation_test.py From models with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #18
Source File: object_detection_evaluation_test.py From models with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #19
Source File: object_detection_evaluation_test.py From models with Apache License 2.0 | 5 votes |
def test_merge_internal_state(self): # Test that if initial state is merged, the results of the evaluation are # the same. od_eval_state = self.od_eval.get_internal_state() copy_od_eval = object_detection_evaluation.ObjectDetectionEvaluation( self.od_eval.num_class) copy_od_eval.merge_internal_state(od_eval_state) (average_precision_per_class, mean_ap, precisions_per_class, recalls_per_class, corloc_per_class, mean_corloc) = self.od_eval.evaluate() (copy_average_precision_per_class, copy_mean_ap, copy_precisions_per_class, copy_recalls_per_class, copy_corloc_per_class, copy_mean_corloc) = copy_od_eval.evaluate() for i in range(self.od_eval.num_class): self.assertTrue( np.allclose(copy_precisions_per_class[i], precisions_per_class[i])) self.assertTrue( np.allclose(copy_recalls_per_class[i], recalls_per_class[i])) self.assertTrue( np.allclose(copy_average_precision_per_class, average_precision_per_class)) self.assertTrue(np.allclose(copy_corloc_per_class, corloc_per_class)) self.assertAlmostEqual(copy_mean_ap, mean_ap) self.assertAlmostEqual(copy_mean_corloc, mean_corloc)
Example #20
Source File: object_detection_evaluation_test.py From motion-rcnn with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = "img1" groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = "img2" groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2) image_key3 = "img3" groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = "img2" detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #21
Source File: object_detection_evaluation_test.py From mtl-ssl with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = "img1" groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = "img2" groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) subset_list2 = np.array(['default', '', 'default']) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, subset_list2) image_key3 = "img3" groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = "img2" detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #22
Source File: object_detection_evaluation_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #23
Source File: object_detection_evaluation_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #24
Source File: object_detection_evaluation_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #25
Source File: object_detection_evaluation_test.py From object_detector_app with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = "img1" groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = "img2" groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2) image_key3 = "img3" groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = "img2" detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #26
Source File: object_detection_evaluation_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #27
Source File: object_detection_evaluation_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #28
Source File: object_detection_evaluation_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)
Example #29
Source File: object_detection_evaluation_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def test_value_error_on_zero_classes(self): with self.assertRaises(ValueError): object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes=0)
Example #30
Source File: object_detection_evaluation_test.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def setUp(self): num_groundtruth_classes = 3 self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation( num_groundtruth_classes) image_key1 = 'img1' groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key1, groundtruth_boxes1, groundtruth_class_labels1) image_key2 = 'img2' groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool) self.od_eval.add_single_ground_truth_image_info( image_key2, groundtruth_boxes2, groundtruth_class_labels2, groundtruth_is_difficult_list2, groundtruth_is_group_of_list2) image_key3 = 'img3' groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float) groundtruth_class_labels3 = np.array([1], dtype=int) self.od_eval.add_single_ground_truth_image_info( image_key3, groundtruth_boxes3, groundtruth_class_labels3) image_key = 'img2' detected_boxes = np.array( [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]], dtype=float) detected_class_labels = np.array([0, 0, 2], dtype=int) detected_scores = np.array([0.7, 0.8, 0.9], dtype=float) self.od_eval.add_single_detected_image_info( image_key, detected_boxes, detected_scores, detected_class_labels)