Python pylab.annotate() Examples
The following are 5
code examples of pylab.annotate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pylab
, or try the search function
.
![](https://www.programcreek.com/common/static/images/search.png)
Example #1
Source File: View.py From Deep-Spying with Apache License 2.0 | 9 votes |
def plot_confusion_matrix(self, matrix, labels): if not self.to_save and not self.to_show: return pylab.figure() pylab.imshow(matrix, interpolation='nearest', cmap=pylab.cm.jet) pylab.title("Confusion Matrix") for i, vi in enumerate(matrix): for j, vj in enumerate(vi): pylab.annotate("%.1f" % vj, xy=(j, i), horizontalalignment='center', verticalalignment='center', fontsize=9) pylab.colorbar() classes = np.arange(len(labels)) pylab.xticks(classes, labels) pylab.yticks(classes, labels) pylab.ylabel('Expected label') pylab.xlabel('Predicted label')
Example #2
Source File: plot_recallPrecision.py From breaking_cycles_in_noisy_hierarchies with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _plotFMeasures(fstepsize=.1, stepsize=0.0005, start = 0.0, end = 1.0): """Plots 10 fmeasure Curves into the current canvas.""" p = sc.arange(start, end, stepsize)[1:] for f in sc.arange(0., 1., fstepsize)[1:]: points = [(x, _fmeasureCurve(f, x)) for x in p if 0 < _fmeasureCurve(f, x) <= 1.5] try: xs, ys = zip(*points) curve, = pl.plot(xs, ys, "--", color="gray", linewidth=0.8) # , label=r"$f=%.1f$"%f) # exclude labels, for legend # bad hack: # gets the 10th last datapoint, from that goes a bit to the left, and a bit down datapoint_x_loc = int(len(xs)/2) datapoint_y_loc = int(len(ys)/2) # x_left = 0.05 # y_left = 0.035 x_left = 0.035 y_left = -0.02 pl.annotate(r"$f=%.1f$" % f, xy=(xs[datapoint_x_loc], ys[datapoint_y_loc]), xytext=(xs[datapoint_x_loc] - x_left, ys[datapoint_y_loc] - y_left), size="small", color="gray") except Exception as e: print e #colors = "gcmbbbrrryk" #colors = "yyybbbrrrckgm" # 7 is a prime, so we'll loop over all combinations of colors and markers, when zipping their cycles
Example #3
Source File: utils.py From mmvt with GNU General Public License v3.0 | 5 votes |
def add_annotation(ax, text, x, y, z=None): from mpl_toolkits.mplot3d import proj3d import pylab if not z is None: x2, y2, _ = proj3d.proj_transform(x,y,z, ax.get_proj()) else: x2, y2 = x, y pylab.annotate( text, xy = (x2, y2), xytext = (-20, 20), textcoords = 'offset points', ha = 'right', va = 'bottom', bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5), arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0'))
Example #4
Source File: plotting.py From webvectors with GNU General Public License v3.0 | 5 votes |
def embed(words, matrix, classes, usermodel, fname): perplexity = int(len(words) ** 0.5) # We set perplexity to a square root of the words number embedding = TSNE(n_components=2, perplexity=perplexity, metric='cosine', n_iter=500, init='pca') y = embedding.fit_transform(matrix) print('2-d embedding finished', file=sys.stderr) class_set = [c for c in set(classes)] colors = plot.cm.rainbow(np.linspace(0, 1, len(class_set))) class2color = [colors[class_set.index(w)] for w in classes] xpositions = y[:, 0] ypositions = y[:, 1] seen = set() plot.clf() for color, word, class_label, x, y in zip(class2color, words, classes, xpositions, ypositions): plot.scatter(x, y, 20, marker='.', color=color, label=class_label if class_label not in seen else "") seen.add(class_label) lemma = word.split('_')[0].replace('::', ' ') mid = len(lemma) / 2 mid *= 4 # TODO Should really think about how to adapt this variable to the real plot size plot.annotate(lemma, xy=(x - mid, y), size='x-large', weight='bold', fontproperties=font, color=color) plot.tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) plot.tick_params(axis='y', which='both', left=False, right=False, labelleft=False) plot.legend(loc='best') plot.savefig(root + 'data/images/tsneplots/' + usermodel + '_' + fname + '.png', dpi=150, bbox_inches='tight') plot.close() plot.clf()
Example #5
Source File: __init__.py From EDeN with MIT License | 4 votes |
def plot_embedding(data_matrix, y, labels=None, image_file_name=None, title=None, cmap='rainbow', density=False): """plot_embedding.""" import matplotlib.pyplot as plt from matplotlib import offsetbox from PIL import Image from eden.embedding import embed_dat_matrix_two_dimensions if title is not None: plt.title(title) if density: embed_dat_matrix_two_dimensions(data_matrix, y=y, instance_colormap=cmap) else: plt.scatter(data_matrix[:, 0], data_matrix[:, 1], c=y, cmap=cmap, alpha=.7, s=30, edgecolors='black') plt.xticks([]) plt.yticks([]) plt.axis('off') if image_file_name is not None: num_instances = data_matrix.shape[0] ax = plt.subplot(111) for i in range(num_instances): img = Image.open(image_file_name + str(i) + '.png') imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(img, zoom=1), data_matrix[i], pad=0, frameon=False) ax.add_artist(imagebox) if labels is not None: for id in range(data_matrix.shape[0]): label = str(labels[id]) x = data_matrix[id, 0] y = data_matrix[id, 1] plt.annotate(label, xy=(x, y), xytext=(0, 0), textcoords='offset points')