Python tensorflow.python.platform.tf_logging.warn() Examples
The following are 30
code examples of tensorflow.python.platform.tf_logging.warn().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.platform.tf_logging
, or try the search function
.
Example #1
Source File: rnn_cell.py From ecm with Apache License 2.0 | 6 votes |
def __init__(self, cell, num_proj, input_size=None): """Create a cell with input projection. Args: cell: an RNNCell, a projection of inputs is added before it. num_proj: Python integer. The dimension to project to. input_size: Deprecated and unused. Raises: TypeError: if cell is not an RNNCell. """ if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) if not isinstance(cell, RNNCell): raise TypeError("The parameter cell is not RNNCell.") self._cell = cell self._num_proj = num_proj
Example #2
Source File: rnn_cell_impl.py From lambda-packs with MIT License | 6 votes |
def __init__(self, num_units, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. """ super(BasicLSTMCell, self).__init__(_reuse=reuse) if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation or math_ops.tanh
Example #3
Source File: saved_model_export_utils.py From lambda-packs with MIT License | 6 votes |
def garbage_collect_exports(export_dir_base, exports_to_keep): """Deletes older exports, retaining only a given number of the most recent. Export subdirectories are assumed to be named with monotonically increasing integers; the most recent are taken to be those with the largest values. Args: export_dir_base: the base directory under which each export is in a versioned subdirectory. exports_to_keep: the number of recent exports to retain. """ if exports_to_keep is None: return keep_filter = gc.largest_export_versions(exports_to_keep) delete_filter = gc.negation(keep_filter) for p in delete_filter(gc.get_paths(export_dir_base, parser=_export_version_parser)): try: gfile.DeleteRecursively(p.path) except errors_impl.NotFoundError as e: logging.warn('Can not delete %s recursively: %s', p.path, e)
Example #4
Source File: bn_basic_lstm.py From tensorflow_end2end_speech_recognition with MIT License | 6 votes |
def __init__(self, num_units, is_training, forget_bias=1.0, input_size=None, state_is_tuple=True, reuse=None): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. is_training: bool, set True when training. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. """ if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._reuse = reuse self._is_training = is_training
Example #5
Source File: graph_actions.py From lambda-packs with MIT License | 6 votes |
def _write_summary_results(output_dir, eval_results, current_global_step): """Writes eval results into summary file in given dir.""" logging.info('Saving evaluation summary for step %d: %s', current_global_step, _eval_results_to_str(eval_results)) summary_writer = get_summary_writer(output_dir) summary = summary_pb2.Summary() for key in eval_results: if eval_results[key] is None: continue value = summary.value.add() value.tag = key if (isinstance(eval_results[key], np.float32) or isinstance(eval_results[key], float)): value.simple_value = float(eval_results[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary, current_global_step) summary_writer.flush()
Example #6
Source File: feature_column.py From lambda-packs with MIT License | 6 votes |
def __new__(cls, column_name, size, dimension, hash_key, combiner="sqrtn", initializer=None): if initializer is not None and not callable(initializer): raise ValueError("initializer must be callable if specified. " "column_name: {}".format(column_name)) if initializer is None: logging.warn("The default stddev value of initializer will change from " "\"0.1\" to \"1/sqrt(dimension)\" after 2017/02/25.") stddev = 0.1 initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=stddev) return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size, dimension, hash_key, combiner, initializer)
Example #7
Source File: variable_scope.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None): """Deprecated: context manager for defining an op that creates variables.""" logging.warn("tf.variable_op_scope(values, name, default_name) is deprecated," " use tf.variable_scope(name, default_name, values)") with variable_scope(name_or_scope, default_name=default_name, values=values, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, reuse=reuse, dtype=dtype) as scope: yield scope
Example #8
Source File: event_accumulator.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _ParseFileVersion(file_version): """Convert the string file_version in event.proto into a float. Args: file_version: String file_version from event.proto Returns: Version number as a float. """ tokens = file_version.split('brain.Event:') try: return float(tokens[-1]) except ValueError: ## This should never happen according to the definition of file_version ## specified in event.proto. logging.warn(('Invalid event.proto file_version. Defaulting to use of ' 'out-of-order event.step logic for purging expired events.')) return -1
Example #9
Source File: core_rnn_cell_impl.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. """ if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation
Example #10
Source File: core_rnn_cell_impl.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, cell, num_proj, input_size=None): """Create a cell with input projection. Args: cell: an RNNCell, a projection of inputs is added before it. num_proj: Python integer. The dimension to project to. input_size: Deprecated and unused. Raises: TypeError: if cell is not an RNNCell. """ if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) if not isinstance(cell, RNNCell): raise TypeError("The parameter cell is not RNNCell.") self._cell = cell self._num_proj = num_proj
Example #11
Source File: graph_actions.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _write_summary_results(output_dir, eval_results, current_global_step): """Writes eval results into summary file in given dir.""" logging.info('Saving evaluation summary for step %d: %s', current_global_step, _eval_results_to_str(eval_results)) summary_writer = get_summary_writer(output_dir) summary = summary_pb2.Summary() for key in eval_results: if eval_results[key] is None: continue value = summary.value.add() value.tag = key if (isinstance(eval_results[key], np.float32) or isinstance(eval_results[key], float)): value.simple_value = float(eval_results[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary, current_global_step) summary_writer.flush()
Example #12
Source File: tpu_estimator.py From Chinese-XLNet with Apache License 2.0 | 6 votes |
def _validate_input_pipeline(self): """Validates the input pipeline. Perform some sanity checks to log user friendly information. We should error out to give users better error message. But, if _WRAP_INPUT_FN_INTO_WHILE_LOOP is False (legacy behavior), we cannot break user code, so, log a warning. Raises: RuntimeError: If the validation failed. """ if ops.get_default_graph().get_collection(ops.GraphKeys.QUEUE_RUNNERS): err_msg = ('Input pipeline contains one or more QueueRunners. ' 'It could be slow and not scalable. Please consider ' 'converting your input pipeline to use `tf.data` instead (see ' 'https://www.tensorflow.org/guide/datasets for ' 'instructions.') if _WRAP_INPUT_FN_INTO_WHILE_LOOP: raise RuntimeError(err_msg) else: logging.warn(err_msg)
Example #13
Source File: basic_lstm.py From tensorflow_end2end_speech_recognition with MIT License | 6 votes |
def __init__(self, num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, reuse=None): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. """ if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._reuse = reuse
Example #14
Source File: rnn_cell.py From ecm with Apache License 2.0 | 6 votes |
def __init__(self, num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. """ if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation
Example #15
Source File: graph_actions.py From deep_image_model with Apache License 2.0 | 6 votes |
def _write_summary_results(output_dir, eval_results, current_global_step): """Writes eval results into summary file in given dir.""" logging.info('Saving evaluation summary for step %d: %s', current_global_step, _eval_results_to_str(eval_results)) summary_writer = get_summary_writer(output_dir) summary = summary_pb2.Summary() for key in eval_results: if eval_results[key] is None: continue value = summary.value.add() value.tag = key if (isinstance(eval_results[key], np.float32) or isinstance(eval_results[key], float)): value.simple_value = float(eval_results[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary, current_global_step) summary_writer.flush()
Example #16
Source File: event_accumulator.py From deep_image_model with Apache License 2.0 | 6 votes |
def _ParseFileVersion(file_version): """Convert the string file_version in event.proto into a float. Args: file_version: String file_version from event.proto Returns: Version number as a float. """ tokens = file_version.split('brain.Event:') try: return float(tokens[-1]) except ValueError: ## This should never happen according to the definition of file_version ## specified in event.proto. logging.warn(('Invalid event.proto file_version. Defaulting to use of ' 'out-of-order event.step logic for purging expired events.')) return -1
Example #17
Source File: rnn_cell.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. """ if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation
Example #18
Source File: variable_scope.py From deep_image_model with Apache License 2.0 | 6 votes |
def variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None): """Deprecated: context manager for defining an op that creates variables.""" logging.warn("tf.variable_op_scope(values, name, default_name) is deprecated," " use tf.variable_scope(name, default_name, values)") with variable_scope(name_or_scope, default_name=default_name, values=values, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, reuse=reuse, dtype=dtype) as scope: yield scope
Example #19
Source File: rnn_cell.py From ROLO with Apache License 2.0 | 6 votes |
def __init__(self, cell, num_proj, input_size=None): """Create a cell with input projection. Args: cell: an RNNCell, a projection of inputs is added before it. num_proj: Python integer. The dimension to project to. input_size: Deprecated and unused. Raises: TypeError: if cell is not an RNNCell. """ if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) if not isinstance(cell, RNNCell): raise TypeError("The parameter cell is not RNNCell.") self._cell = cell self._num_proj = num_proj
Example #20
Source File: rnn_cell.py From ROLO with Apache License 2.0 | 6 votes |
def __init__(self, num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=tanh): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. """ if not state_is_tuple: logging.warn("%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation
Example #21
Source File: ConvLSTMCell.py From Conv3D_BICLSTM with MIT License | 6 votes |
def __init__(self, num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1, num_proj_shards=1, forget_bias=1.0, state_is_tuple=False, activation=tanh): # if not state_is_tuple: # logging.warn( # "%s: Using a concatenated state is slower and will soon be " # "deprecated. Use state_is_tuple=True." % self) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated." % self) #self._use_peepholes = use_peepholes #self._cell_clip = cell_clip #self._initializer = initializer #self._num_proj = num_proj #self._num_unit_shards = num_unit_shards #self._num_proj_shards = num_proj_shards self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple self._activation = activation
Example #22
Source File: ops.py From lambda-packs with MIT License | 5 votes |
def op_scope(values, name, default_name=None): """DEPRECATED. Same as name_scope above, just different argument order.""" logging.warn("tf.op_scope(values, name, default_name) is deprecated," " use tf.name_scope(name, default_name, values)") with name_scope(name, default_name=default_name, values=values) as scope: yield scope
Example #23
Source File: ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def op_scope(values, name, default_name=None): """DEPRECATED. Same as name_scope above, just different argument order.""" logging.warn("tf.op_scope(values, name, default_name) is deprecated," " use tf.name_scope(name, default_name, values)") with name_scope(name, default_name=default_name, values=values) as scope: yield scope
Example #24
Source File: variable_scope.py From lambda-packs with MIT License | 5 votes |
def variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None, use_resource=None): """Deprecated: context manager for defining an op that creates variables.""" logging.warn("tf.variable_op_scope(values, name, default_name) is deprecated," " use tf.variable_scope(name, default_name, values)") with variable_scope(name_or_scope, default_name=default_name, values=values, initializer=initializer, regularizer=regularizer, caching_device=caching_device, partitioner=partitioner, custom_getter=custom_getter, reuse=reuse, dtype=dtype, use_resource=use_resource) as scope: yield scope
Example #25
Source File: rnn_cell.py From deep_image_model with Apache License 2.0 | 5 votes |
def __init__(self, num_units, input_size=None, activation=tanh): if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._activation = activation
Example #26
Source File: core_rnn_cell.py From lambda-packs with MIT License | 5 votes |
def __init__(self, cell, num_proj, activation=None, input_size=None, reuse=None): """Create a cell with input projection. Args: cell: an RNNCell, a projection of inputs is added before it. num_proj: Python integer. The dimension to project to. activation: (optional) an optional activation function. input_size: Deprecated and unused. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. Raises: TypeError: if cell is not an RNNCell. """ super(InputProjectionWrapper, self).__init__(_reuse=reuse) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) if not _like_rnncell(cell): raise TypeError("The parameter cell is not RNNCell.") self._cell = cell self._num_proj = num_proj self._activation = activation
Example #27
Source File: rnn_cell.py From Multiview2Novelview with MIT License | 5 votes |
def __init__(self, num_units, forget_bias=1.0, input_size=None, activation=math_ops.tanh, layer_norm=True, norm_gain=1.0, norm_shift=0.0, dropout_keep_prob=1.0, dropout_prob_seed=None, reuse=None): """Initializes the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). input_size: Deprecated and unused. activation: Activation function of the inner states. layer_norm: If `True`, layer normalization will be applied. norm_gain: float, The layer normalization gain initial value. If `layer_norm` has been set to `False`, this argument will be ignored. norm_shift: float, The layer normalization shift initial value. If `layer_norm` has been set to `False`, this argument will be ignored. dropout_keep_prob: unit Tensor or float between 0 and 1 representing the recurrent dropout probability value. If float and 1.0, no dropout will be applied. dropout_prob_seed: (optional) integer, the randomness seed. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. """ super(LayerNormBasicLSTMCell, self).__init__(_reuse=reuse) if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._activation = activation self._forget_bias = forget_bias self._keep_prob = dropout_keep_prob self._seed = dropout_prob_seed self._layer_norm = layer_norm self._norm_gain = norm_gain self._norm_shift = norm_shift self._reuse = reuse
Example #28
Source File: feature_column.py From lambda-packs with MIT License | 5 votes |
def __new__(cls, sparse_id_column, dimension, combiner="mean", initializer=None, ckpt_to_load_from=None, tensor_name_in_ckpt=None, shared_embedding_name=None, shared_vocab_size=None, max_norm=None, trainable=True): if initializer is not None and not callable(initializer): raise ValueError("initializer must be callable if specified. " "Embedding of column_name: {}".format( sparse_id_column.name)) if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None): raise ValueError("Must specify both `ckpt_to_load_from` and " "`tensor_name_in_ckpt` or none of them.") if initializer is None: logging.warn("The default stddev value of initializer will change from " "\"1/sqrt(vocab_size)\" to \"1/sqrt(dimension)\" after " "2017/02/25.") stddev = 1 / math.sqrt(sparse_id_column.length) initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=stddev) return super(_EmbeddingColumn, cls).__new__(cls, sparse_id_column, dimension, combiner, initializer, ckpt_to_load_from, tensor_name_in_ckpt, shared_embedding_name, shared_vocab_size, max_norm, trainable)
Example #29
Source File: rnn_cell.py From ROLO with Apache License 2.0 | 5 votes |
def __init__(self, num_units, input_size=None, activation=tanh): if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._activation = activation
Example #30
Source File: rnn_cell.py From deep_image_model with Apache License 2.0 | 5 votes |
def __init__(self, num_units, input_size=None, activation=tanh): if input_size is not None: logging.warn("%s: The input_size parameter is deprecated.", self) self._num_units = num_units self._activation = activation