Python rasa_nlu.config.RasaNLUConfig() Examples

The following are 9 code examples of rasa_nlu.config.RasaNLUConfig(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module rasa_nlu.config , or try the search function .
Example #1
Source File: train_online.py    From rasa_wechat with Apache License 2.0 6 votes vote down vote up
def parse(self, message):
        interpreter = Interpreter.load(nlu_model_path, RasaNLUConfig("../mom/nlu_model_config.json"))
        intent = interpreter.parse(message)
        return intent
        # return {
        #     "text": message,
        #     "intent": {"name": intent, "confidence": 1.0},
        #     "entities": []
        # } 
Example #2
Source File: train_nlu.py    From rasa_wechat with Apache License 2.0 5 votes vote down vote up
def train():
    training_data = load_data('../mom/data/nlu.json')
    trainer = Trainer(RasaNLUConfig("../mom/nlu_model_config.json"))
    trainer.train(training_data)
    model_directory = trainer.persist('../models')  # Returns the directory the model is stored in
    return model_directory 
Example #3
Source File: train_nlu.py    From rasa_wechat with Apache License 2.0 5 votes vote down vote up
def predict(model_directory):
    from rasa_nlu.model import Metadata, Interpreter
    # where `model_directory points to the folder the model is persisted in
    interpreter = Interpreter.load(model_directory, RasaNLUConfig("../mom/nlu_model_config.json"))
    print (interpreter.parse("salad"))

# model_directory = train()
# print (model_directory) 
Example #4
Source File: test.py    From rasa_wechat with Apache License 2.0 5 votes vote down vote up
def parse(self, message):
        interpreter = Interpreter.load(nlu_model_path, RasaNLUConfig("../mom/nlu_model_config.json"))
        intent = interpreter.parse(message)
        return intent 
Example #5
Source File: train_nlu.py    From rasa_wechat with Apache License 2.0 5 votes vote down vote up
def train_babi_nlu():
    training_data = load_data('examples/babi/data/franken_data.json')
    trainer = Trainer(RasaNLUConfig("examples/babi/data/config_nlu.json"))
    trainer.train(training_data)
    model_directory = trainer.persist('examples/babi/models/nlu/',
                                      fixed_model_name=model_name)
    return model_directory 
Example #6
Source File: interpreter.py    From rasa_wechat with Apache License 2.0 5 votes vote down vote up
def parse(self, text):
        """Parses a text message.

        Returns a nlu value if the parsing of the text failed."""

        if self.lazy_init and self.interpreter is None:
            from rasa_nlu.model import Interpreter
            from rasa_nlu.config import RasaNLUConfig
            self.interpreter = Interpreter.load(self.metadata,
                                                RasaNLUConfig(self.config_file,
                                                              os.environ))
        return self.interpreter.parse(text) 
Example #7
Source File: yaha_tokenizer.py    From Rasa_NLU_Chi with Apache License 2.0 5 votes vote down vote up
def train(self, training_data, config, **kwargs):
        # type: (TrainingData, RasaNLUConfig, **Any) -> None
        if config['language'] != 'zh':
            raise Exception("tokenizer_yaha is only used for Chinese. Check your configure json file.")
            
        for example in training_data.training_examples:
            example.set("tokens", self.tokenize(example.text)) 
Example #8
Source File: rasa_classifier.py    From JusticeAI with MIT License 5 votes vote down vote up
def __init__(self):
        self.rasa_config = RasaNLUConfig(self.config_file)
        self.trainer = Trainer(self.rasa_config, self.builder) 
Example #9
Source File: rasa.py    From bot with MIT License 5 votes vote down vote up
def __init__(self, data_provider, config_file, data_file, model_dir):
		logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

		# store unparsed messages, so later we can train bot
		self.unparsed_messages = []

		self.data_provider = data_provider
		self.data_file = data_file
		self.model_dir = model_dir
		self.rasa_config = RasaNLUConfig(config_file)