Python networkx.readwrite.json_graph.tree_data() Examples
The following are 7
code examples of networkx.readwrite.json_graph.tree_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
networkx.readwrite.json_graph
, or try the search function
.
Example #1
Source File: beam_search.py From avsr-tf1 with GNU General Public License v3.0 | 6 votes |
def create_html(predicted_ids, parent_ids, scores, labels_ids, vocab, filename, output_dir): graph = create_graph( predicted_ids=predicted_ids, parent_ids=parent_ids, scores=scores, vocab=vocab) json_str = json.dumps(json_graph.tree_data(graph, (0, 0)), ensure_ascii=True) transcript = [vocab[sym] for sym in labels_ids] transcript.remove('EOS') transcript = ''.join(transcript) output_fname = path.join(output_dir, filename + '.html') num_subdirs = filename.count('/') # too hacky ? makedirs(path.dirname(output_fname), exist_ok=True) html_str = HTML_TEMPLATE.substitute(DATA=json_str, WALK='../'*num_subdirs, transcript=transcript) with open(output_fname, 'w') as f: f.write(html_str)
Example #2
Source File: topology.py From vitrage with Apache License 2.0 | 6 votes |
def as_tree(graph, root=OPENSTACK_CLUSTER, reverse=False): if nx.__version__ >= '2.0': linked_graph = json_graph.node_link_graph( graph, attrs={'name': 'graph_index'}) else: linked_graph = json_graph.node_link_graph(graph) if 0 == nx.number_of_nodes(linked_graph): return {} if reverse: linked_graph = linked_graph.reverse() if nx.__version__ >= '2.0': return json_graph.tree_data( linked_graph, root=root, attrs={'id': 'graph_index', 'children': 'children'}) else: return json_graph.tree_data(linked_graph, root=root)
Example #3
Source File: generate_graphs.py From sockeye with Apache License 2.0 | 5 votes |
def generate(input_data, output_dir, include_pad=False): path_base = os.path.dirname(os.path.realpath(__file__)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Copy required files shutil.copy2(path_base+"/templates/tree.css", output_dir) shutil.copy2(path_base+"/templates/tree.js", output_dir) with open(input_data) as beams: for i, line in enumerate(beams): beam = json.loads(line) graph = create_graph(predicted_ids=beam["predicted_tokens"], parent_ids=beam["parent_ids"], scores=beam["scores"], normalized_scores=beam["normalized_scores"], include_pad=include_pad) json_str = json.dumps( json_graph.tree_data(graph, (0, 0)), ensure_ascii=True) html_str = HTML_TEMPLATE.substitute(DATA=json_str, SENT=str(i)) output_path = os.path.join(output_dir, "{:06d}.html".format(i)) with open(output_path, "w", encoding="utf-8") as out: out.write(html_str) print("Output beams written to: {}".format(output_dir))
Example #4
Source File: top_k_seq2seq.py From reaction_prediction_seq2seq with Apache License 2.0 | 5 votes |
def draw_graph(graph): from string import Template import shutil from networkx.readwrite import json_graph import json HTML_TEMPLATE = Template(""" <!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <title>Beam Search</title> <link rel="stylesheet" type="text/css" href="tree.css"> <script src="http://d3js.org/d3.v3.min.js"></script> </head> <body> <script> var treeData = $DATA </script> <script src="tree.js"></script> </body> </html>""") seq2seq_path = '/scratch/make_build/gram_as_foreight_lang/seq2seq' vis_path = base_path+'/vis/graph_beam/' os.makedirs(base_path+'/vis/graph_beam/', exist_ok=True) shutil.copy2(seq2seq_path+"/bin/tools/beam_search_viz/tree.css", vis_path) shutil.copy2(seq2seq_path+"/bin/tools/beam_search_viz/tree.js", vis_path) json_str = json.dumps(json_graph.tree_data(graph, (0, 0)), ensure_ascii=False) html_str = HTML_TEMPLATE.substitute(DATA=json_str) output_path = os.path.join(vis_path, "graph.html") with open(output_path, "w") as file: file.write(html_str) print(output_path)
Example #5
Source File: generate_beam_viz.py From reaction_prediction_seq2seq with Apache License 2.0 | 5 votes |
def main(): beam_data = np.load(ARGS.data) # Optionally load vocabulary data vocab = None if ARGS.vocab: with open(ARGS.vocab) as file: vocab = file.readlines() vocab = [_.strip() for _ in vocab] vocab += ["UNK", "SEQUENCE_START", "SEQUENCE_END"] if not os.path.exists(ARGS.output_dir): os.makedirs(ARGS.output_dir) # Copy required files shutil.copy2("/home/bowen/pycharm_deployment_directory/synthesis/prototype_models/google_seq2seq/bin/tools/beam_search_viz/tree.css", ARGS.output_dir) shutil.copy2("/home/bowen/pycharm_deployment_directory/synthesis/prototype_models/google_seq2seq/bin/tools/beam_search_viz/tree.js", ARGS.output_dir) for idx in range(len(beam_data["predicted_ids"])): predicted_ids = beam_data["predicted_ids"][idx] parent_ids = beam_data["beam_parent_ids"][idx] scores = beam_data["scores"][idx] graph = create_graph( predicted_ids=predicted_ids, parent_ids=parent_ids, scores=scores, vocab=vocab) json_str = json.dumps( json_graph.tree_data(graph, (0, 0)), ensure_ascii=False) html_str = HTML_TEMPLATE.substitute(DATA=json_str) output_path = os.path.join(ARGS.output_dir, "{:06d}.html".format(idx)) with open(output_path, "w") as file: file.write(html_str) print(output_path)
Example #6
Source File: generate_beam_viz.py From conv_seq2seq with Apache License 2.0 | 5 votes |
def main(): beam_data = np.load(ARGS.data) # Optionally load vocabulary data vocab = None if ARGS.vocab: with open(ARGS.vocab) as file: vocab = file.readlines() vocab = [_.strip() for _ in vocab] vocab += ["UNK", "SEQUENCE_START", "SEQUENCE_END"] if not os.path.exists(ARGS.output_dir): os.makedirs(ARGS.output_dir) # Copy required files shutil.copy2("./bin/tools/beam_search_viz/tree.css", ARGS.output_dir) shutil.copy2("./bin/tools/beam_search_viz/tree.js", ARGS.output_dir) for idx in range(len(beam_data["predicted_ids"])): predicted_ids = beam_data["predicted_ids"][idx] parent_ids = beam_data["beam_parent_ids"][idx] scores = beam_data["scores"][idx] graph = create_graph( predicted_ids=predicted_ids, parent_ids=parent_ids, scores=scores, vocab=vocab) json_str = json.dumps( json_graph.tree_data(graph, (0, 0)), ensure_ascii=False) html_str = HTML_TEMPLATE.substitute(DATA=json_str) output_path = os.path.join(ARGS.output_dir, "{:06d}.html".format(idx)) with open(output_path, "w") as file: file.write(html_str) print(output_path)
Example #7
Source File: generate_beam_viz.py From seq2seq with Apache License 2.0 | 5 votes |
def main(): beam_data = np.load(ARGS.data) # Optionally load vocabulary data vocab = None if ARGS.vocab: with open(ARGS.vocab) as file: vocab = file.readlines() vocab = [_.strip() for _ in vocab] vocab += ["UNK", "SEQUENCE_START", "SEQUENCE_END"] if not os.path.exists(ARGS.output_dir): os.makedirs(ARGS.output_dir) # Copy required files shutil.copy2("./bin/tools/beam_search_viz/tree.css", ARGS.output_dir) shutil.copy2("./bin/tools/beam_search_viz/tree.js", ARGS.output_dir) for idx in range(len(beam_data["predicted_ids"])): predicted_ids = beam_data["predicted_ids"][idx] parent_ids = beam_data["beam_parent_ids"][idx] scores = beam_data["scores"][idx] graph = create_graph( predicted_ids=predicted_ids, parent_ids=parent_ids, scores=scores, vocab=vocab) json_str = json.dumps( json_graph.tree_data(graph, (0, 0)), ensure_ascii=False) html_str = HTML_TEMPLATE.substitute(DATA=json_str) output_path = os.path.join(ARGS.output_dir, "{:06d}.html".format(idx)) with open(output_path, "w") as file: file.write(html_str) print(output_path)