Python torch.utils.data.dataloader.ExceptionWrapper() Examples
The following are 12
code examples of torch.utils.data.dataloader.ExceptionWrapper().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.utils.data.dataloader
, or try the search function
.
Example #1
Source File: dataloader.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #2
Source File: dataloader.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #3
Source File: dataloader.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #4
Source File: dataloader.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #5
Source File: dataloader.py From OISR-PyTorch with BSD 2-Clause "Simplified" License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #6
Source File: dataloader.py From AWSRN with MIT License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #7
Source File: dataloader.py From NTIRE2019_EDRN with MIT License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #8
Source File: dataloader.py From 2018_subeesh_epsr_eccvw with MIT License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #9
Source File: dataloader.py From MSRN-PyTorch with MIT License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #10
Source File: dataloader.py From MSRN-PyTorch with MIT License | 6 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #11
Source File: dataloader.py From 3D_Appearance_SR with MIT License | 5 votes |
def _ms_loop(dataset, index_queue, data_queue, collate_fn, scale, seed, init_fn, worker_id): global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) torch.manual_seed(seed) while True: r = index_queue.get() if r is None: break idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) #This is why idx_scale appears in the samples of the train loader except Exception: data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples))
Example #12
Source File: dataloader_new.py From 3D_Appearance_SR with MIT License | 4 votes |
def _ms_loop(dataset, index_queue, data_queue, done_event, collate_fn, scale, seed, init_fn, worker_id): try: global _use_shared_memory _use_shared_memory = True _set_worker_signal_handlers() torch.set_num_threads(1) random.seed(seed) torch.manual_seed(seed) data_queue.cancel_join_thread() if init_fn is not None: init_fn(worker_id) watchdog = ManagerWatchdog() while watchdog.is_alive(): try: r = index_queue.get(timeout=MP_STATUS_CHECK_INTERVAL) except queue.Empty: continue if r is None: # Received the final signal assert done_event.is_set() return elif done_event.is_set(): # Done event is set. But I haven't received the final signal # (None) yet. I will keep continuing until get it, and skip the # processing steps. continue idx, batch_indices = r try: idx_scale = 0 if len(scale) > 1 and dataset.train: idx_scale = random.randrange(0, len(scale)) dataset.set_scale(idx_scale) samples = collate_fn([dataset[i] for i in batch_indices]) samples.append(idx_scale) #This is why idx_scale appears in the samples of the train loader except Exception: # It is important that we don't store exc_info in a variable, # see NOTE [ Python Traceback Reference Cycle Problem ] data_queue.put((idx, ExceptionWrapper(sys.exc_info()))) else: data_queue.put((idx, samples)) del samples except KeyboardInterrupt: # Main process will raise KeyboardInterrupt anyways. pass