Python tensorflow.python.keras.backend.get_value() Examples
The following are 13
code examples of tensorflow.python.keras.backend.get_value().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.keras.backend
, or try the search function
.
Example #1
Source File: k_winners.py From nupic.tensorflow with GNU Affero General Public License v3.0 | 6 votes |
def get_config(self): config = { "percent_on": self.percent_on, "k_inference_factor": self.k_inference_factor, "boost_strength": K.get_value(self.boost_strength), "boost_strength_factor": self.boost_strength_factor, "duty_cycle_period": self.duty_cycle_period, } config.update(super(KWinnersBase, self).get_config()) return config
Example #2
Source File: k_winners.py From nupic.tensorflow with GNU Affero General Public License v3.0 | 6 votes |
def call(self, inputs, training=None, **kwargs): inputs = super().call(inputs, **kwargs) k = K.in_test_phase(x=self.k_inference, alt=self.k, training=training) kwinners = compute_kwinners( x=inputs, k=k, duty_cycles=self.duty_cycles, boost_strength=K.get_value(self.boost_strength), ) duty_cycles = K.in_train_phase( lambda: self.compute_duty_cycle(kwinners), self.duty_cycles, training=training, ) self.add_update(self.duty_cycles.assign(duty_cycles, read_value=False)) increment = K.in_train_phase(K.shape(inputs)[0], 0, training=training) self.add_update( self.learning_iterations.assign_add(increment, read_value=False) ) return kwinners
Example #3
Source File: keras_optimizers_test.py From kfac with Apache License 2.0 | 6 votes |
def testSetTFVariableHyper(self, name, val): kwargs = {'learning_rate': 0.01, 'damping': 0.001} kwargs[name] = tf.Variable(45.0) opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs) setattr(opt, name, val) with self.subTest(name='AssignedCorrectly'): self.assertEqual(backend.get_value(getattr(opt, name)), val) if hasattr(opt.optimizer, name): self.assertEqual(backend.get_value(getattr(opt.optimizer, name)), val) with self.subTest(name='SetError'): with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'): setattr(opt, name, tf.convert_to_tensor(2)) with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'): setattr(opt, name, tf.Variable(2))
Example #4
Source File: keras_optimizers_test.py From kfac with Apache License 2.0 | 6 votes |
def testSetFloatHyper(self, name, val): kwargs = {'learning_rate': 0.01, 'damping': 0.001} kwargs[name] = 45.0 opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs) setattr(opt, name, val) with self.subTest(name='AssignedCorrectly'): self.assertEqual(backend.get_value(getattr(opt, name)), val) if hasattr(opt.optimizer, name): self.assertEqual(backend.get_value(getattr(opt.optimizer, name)), val) with self.subTest(name='SetError'): with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'): setattr(opt, name, tf.convert_to_tensor(2)) with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'): setattr(opt, name, tf.Variable(2))
Example #5
Source File: keras_optimizers_test.py From kfac with Apache License 2.0 | 6 votes |
def testInferredBatchSize(self): dataset = tf.data.Dataset.from_tensors(([1.], [1.])) dataset = dataset.repeat().batch(11, drop_remainder=True) train_batch = dataset.make_one_shot_iterator().get_next() model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))]) loss = 'mse' train_batch = dataset.make_one_shot_iterator().get_next() optimizer = optimizers.Kfac(damping=10., train_batch=train_batch, model=model, adaptive=True, loss=loss, qmodel_update_rescale=0.01) model.compile(optimizer, loss) model.train_on_batch(train_batch[0], train_batch[1]) self.assertEqual( tf.keras.backend.get_value(optimizer.optimizer._batch_size), 11)
Example #6
Source File: keras_optimizers_test.py From kfac with Apache License 2.0 | 5 votes |
def testGettingHyper(self, hyper_ctor): kwarg_values = {'learning_rate': 3, 'damping': 20, 'momentum': 13} kwargs = {k: hyper_ctor(v) for k, v in kwarg_values.items()} opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs) get_value = backend.get_value tf_opt = opt.optimizer with self.subTest(name='MatchesFloat'): for name, val in kwarg_values.items(): self.assertEqual(get_value(getattr(opt, name)), val) with self.subTest(name='MatchesTfOpt'): self.assertEqual(get_value(opt.lr), get_value(tf_opt.learning_rate)) self.assertEqual(get_value(opt.damping), get_value(tf_opt.damping)) self.assertEqual(get_value(opt.momentum), get_value(tf_opt.momentum))
Example #7
Source File: keras_optimizers_test.py From kfac with Apache License 2.0 | 5 votes |
def testGettingVariableHyperFails(self): self.skipTest('This is not fixed in TF 1.14 yet.') opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', learning_rate=tf.Variable(0.1), damping=tf.Variable(0.1)) with self.assertRaisesRegex(tf.errors.FailedPreconditionError, '.*uninitialized.*'): backend.get_value(opt.learning_rate)
Example #8
Source File: keras_optimizers_test.py From kfac with Apache License 2.0 | 5 votes |
def testModifyingTensorHypersFails(self, name, val): kwargs = {'learning_rate': 3, 'damping': 5, 'momentum': 7} kwargs[name] = tf.convert_to_tensor(val) opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs) with self.subTest(name='AssignedCorrectly'): self.assertEqual(backend.get_value(getattr(opt, name)), val) with self.subTest(name='RaisesError'): with self.assertRaisesRegex(AttributeError, "Can't set attribute: {}".format(name)): setattr(opt, name, 17)
Example #9
Source File: multi_reducelronplateau.py From MimickNet with Apache License 2.0 | 5 votes |
def get_lr(self): return K.get_value(self.training_models[0].optimizer.lr)
Example #10
Source File: todense_test.py From text with Apache License 2.0 | 5 votes |
def test_ragged_input_pad_and_mask(self): input_data = ragged_factory_ops.constant([[1, 2, 3, 4, 5], []]) expected_mask = np.array([True, False]) output = ToDense(pad_value=-1, mask=True)(input_data) self.assertTrue(hasattr(output, "_keras_mask")) self.assertIsNot(output._keras_mask, None) self.assertAllEqual(K.get_value(output._keras_mask), expected_mask)
Example #11
Source File: todense_test.py From text with Apache License 2.0 | 5 votes |
def test_sparse_input_pad_and_mask(self): input_data = sparse_tensor.SparseTensor( indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) expected_mask = np.array([True, True, False]) output = ToDense(pad_value=-1, mask=True)(input_data) self.assertTrue(hasattr(output, "_keras_mask")) self.assertIsNot(output._keras_mask, None) self.assertAllEqual(K.get_value(output._keras_mask), expected_mask)
Example #12
Source File: radam.py From multi-label-classification with MIT License | 5 votes |
def get_config(self): config = { 'lr': float(K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'epsilon': self.epsilon, 'amsgrad': self.amsgrad } base_config = super(RAdam, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #13
Source File: adamw.py From keras_imagenet with MIT License | 5 votes |
def get_config(self): config = {'lr': float(K.get_value(self.lr)), 'beta_1': float(K.get_value(self.beta_1)), 'beta_2': float(K.get_value(self.beta_2)), 'decay': float(K.get_value(self.decay)), 'weight_decay': float(K.get_value(self.wd)), 'epsilon': self.epsilon} base_config = super(AdamW, self).get_config() return dict(list(base_config.items()) + list(config.items()))