Python tensorflow.python.keras.backend.get_value() Examples

The following are 13 code examples of tensorflow.python.keras.backend.get_value(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.keras.backend , or try the search function .
Example #1
Source File: k_winners.py    From nupic.tensorflow with GNU Affero General Public License v3.0 6 votes vote down vote up
def get_config(self):
        config = {
            "percent_on": self.percent_on,
            "k_inference_factor": self.k_inference_factor,
            "boost_strength": K.get_value(self.boost_strength),
            "boost_strength_factor": self.boost_strength_factor,
            "duty_cycle_period": self.duty_cycle_period,
        }
        config.update(super(KWinnersBase, self).get_config())
        return config 
Example #2
Source File: k_winners.py    From nupic.tensorflow with GNU Affero General Public License v3.0 6 votes vote down vote up
def call(self, inputs, training=None, **kwargs):
        inputs = super().call(inputs, **kwargs)
        k = K.in_test_phase(x=self.k_inference, alt=self.k, training=training)
        kwinners = compute_kwinners(
            x=inputs,
            k=k,
            duty_cycles=self.duty_cycles,
            boost_strength=K.get_value(self.boost_strength),
        )

        duty_cycles = K.in_train_phase(
            lambda: self.compute_duty_cycle(kwinners),
            self.duty_cycles,
            training=training,
        )
        self.add_update(self.duty_cycles.assign(duty_cycles, read_value=False))

        increment = K.in_train_phase(K.shape(inputs)[0], 0, training=training)
        self.add_update(
            self.learning_iterations.assign_add(increment, read_value=False)
        )

        return kwinners 
Example #3
Source File: keras_optimizers_test.py    From kfac with Apache License 2.0 6 votes vote down vote up
def testSetTFVariableHyper(self, name, val):
    kwargs = {'learning_rate': 0.01, 'damping': 0.001}
    kwargs[name] = tf.Variable(45.0)
    opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
    setattr(opt, name, val)

    with self.subTest(name='AssignedCorrectly'):
      self.assertEqual(backend.get_value(getattr(opt, name)), val)
      if hasattr(opt.optimizer, name):
        self.assertEqual(backend.get_value(getattr(opt.optimizer, name)), val)

    with self.subTest(name='SetError'):
      with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
        setattr(opt, name, tf.convert_to_tensor(2))
      with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
        setattr(opt, name, tf.Variable(2)) 
Example #4
Source File: keras_optimizers_test.py    From kfac with Apache License 2.0 6 votes vote down vote up
def testSetFloatHyper(self, name, val):
    kwargs = {'learning_rate': 0.01, 'damping': 0.001}
    kwargs[name] = 45.0
    opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
    setattr(opt, name, val)

    with self.subTest(name='AssignedCorrectly'):
      self.assertEqual(backend.get_value(getattr(opt, name)), val)
      if hasattr(opt.optimizer, name):
        self.assertEqual(backend.get_value(getattr(opt.optimizer, name)), val)

    with self.subTest(name='SetError'):
      with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
        setattr(opt, name, tf.convert_to_tensor(2))
      with self.assertRaisesRegex(ValueError, 'Dynamic reassignment only.*'):
        setattr(opt, name, tf.Variable(2)) 
Example #5
Source File: keras_optimizers_test.py    From kfac with Apache License 2.0 6 votes vote down vote up
def testInferredBatchSize(self):
    dataset = tf.data.Dataset.from_tensors(([1.], [1.]))
    dataset = dataset.repeat().batch(11, drop_remainder=True)
    train_batch = dataset.make_one_shot_iterator().get_next()

    model = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,))])
    loss = 'mse'
    train_batch = dataset.make_one_shot_iterator().get_next()
    optimizer = optimizers.Kfac(damping=10.,
                                train_batch=train_batch,
                                model=model,
                                adaptive=True,
                                loss=loss,
                                qmodel_update_rescale=0.01)
    model.compile(optimizer, loss)
    model.train_on_batch(train_batch[0], train_batch[1])
    self.assertEqual(
        tf.keras.backend.get_value(optimizer.optimizer._batch_size), 11) 
Example #6
Source File: keras_optimizers_test.py    From kfac with Apache License 2.0 5 votes vote down vote up
def testGettingHyper(self, hyper_ctor):
    kwarg_values = {'learning_rate': 3, 'damping': 20, 'momentum': 13}
    kwargs = {k: hyper_ctor(v) for k, v in kwarg_values.items()}
    opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
    get_value = backend.get_value
    tf_opt = opt.optimizer
    with self.subTest(name='MatchesFloat'):
      for name, val in kwarg_values.items():
        self.assertEqual(get_value(getattr(opt, name)), val)
    with self.subTest(name='MatchesTfOpt'):
      self.assertEqual(get_value(opt.lr), get_value(tf_opt.learning_rate))
      self.assertEqual(get_value(opt.damping), get_value(tf_opt.damping))
      self.assertEqual(get_value(opt.momentum), get_value(tf_opt.momentum)) 
Example #7
Source File: keras_optimizers_test.py    From kfac with Apache License 2.0 5 votes vote down vote up
def testGettingVariableHyperFails(self):
    self.skipTest('This is not fixed in TF 1.14 yet.')
    opt = optimizers.Kfac(model=_simple_mlp(),
                          loss='mse',
                          learning_rate=tf.Variable(0.1),
                          damping=tf.Variable(0.1))
    with self.assertRaisesRegex(tf.errors.FailedPreconditionError,
                                '.*uninitialized.*'):
      backend.get_value(opt.learning_rate) 
Example #8
Source File: keras_optimizers_test.py    From kfac with Apache License 2.0 5 votes vote down vote up
def testModifyingTensorHypersFails(self, name, val):
    kwargs = {'learning_rate': 3, 'damping': 5, 'momentum': 7}
    kwargs[name] = tf.convert_to_tensor(val)
    opt = optimizers.Kfac(model=_simple_mlp(), loss='mse', **kwargs)
    with self.subTest(name='AssignedCorrectly'):
      self.assertEqual(backend.get_value(getattr(opt, name)), val)
    with self.subTest(name='RaisesError'):
      with self.assertRaisesRegex(AttributeError,
                                  "Can't set attribute: {}".format(name)):
        setattr(opt, name, 17) 
Example #9
Source File: multi_reducelronplateau.py    From MimickNet with Apache License 2.0 5 votes vote down vote up
def get_lr(self):
        return K.get_value(self.training_models[0].optimizer.lr) 
Example #10
Source File: todense_test.py    From text with Apache License 2.0 5 votes vote down vote up
def test_ragged_input_pad_and_mask(self):
    input_data = ragged_factory_ops.constant([[1, 2, 3, 4, 5], []])
    expected_mask = np.array([True, False])

    output = ToDense(pad_value=-1, mask=True)(input_data)
    self.assertTrue(hasattr(output, "_keras_mask"))
    self.assertIsNot(output._keras_mask, None)
    self.assertAllEqual(K.get_value(output._keras_mask), expected_mask) 
Example #11
Source File: todense_test.py    From text with Apache License 2.0 5 votes vote down vote up
def test_sparse_input_pad_and_mask(self):
    input_data = sparse_tensor.SparseTensor(
        indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])

    expected_mask = np.array([True, True, False])

    output = ToDense(pad_value=-1, mask=True)(input_data)
    self.assertTrue(hasattr(output, "_keras_mask"))
    self.assertIsNot(output._keras_mask, None)
    self.assertAllEqual(K.get_value(output._keras_mask), expected_mask) 
Example #12
Source File: radam.py    From multi-label-classification with MIT License 5 votes vote down vote up
def get_config(self):
        config = {
            'lr': float(K.get_value(self.lr)),
            'beta_1': float(K.get_value(self.beta_1)),
            'beta_2': float(K.get_value(self.beta_2)),
            'decay': float(K.get_value(self.decay)),
            'epsilon': self.epsilon,
            'amsgrad': self.amsgrad
        }
        base_config = super(RAdam, self).get_config()
        return dict(list(base_config.items()) + list(config.items())) 
Example #13
Source File: adamw.py    From keras_imagenet with MIT License 5 votes vote down vote up
def get_config(self):
        config = {'lr': float(K.get_value(self.lr)),
                  'beta_1': float(K.get_value(self.beta_1)),
                  'beta_2': float(K.get_value(self.beta_2)),
                  'decay': float(K.get_value(self.decay)),
                  'weight_decay': float(K.get_value(self.wd)),
                  'epsilon': self.epsilon}
        base_config = super(AdamW, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))