Python tensorflow.python.keras.backend.image_data_format() Examples
The following are 18
code examples of tensorflow.python.keras.backend.image_data_format().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.keras.backend
, or try the search function
.
Example #1
Source File: imagenet_utils.py From ImageAI with MIT License | 5 votes |
def preprocess_input(x, data_format=None): """Preprocesses a tensor encoding a batch of images. # Arguments x: input Numpy tensor, 4D. data_format: data format of the image tensor. # Returns Preprocessed tensor. """ if data_format is None: data_format = K.image_data_format() assert data_format in {'channels_last', 'channels_first'} if data_format == 'channels_first': if x.ndim == 3: # 'RGB'->'BGR' x = x[::-1, ...] # Zero-center by mean pixel x[0, :, :] -= 103.939 x[1, :, :] -= 116.779 x[2, :, :] -= 123.68 else: x = x[:, ::-1, ...] x[:, 0, :, :] -= 103.939 x[:, 1, :, :] -= 116.779 x[:, 2, :, :] -= 123.68 else: # 'RGB'->'BGR' x = x[..., ::-1] # Zero-center by mean pixel x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 return x
Example #2
Source File: modelling.py From facies_net with GNU Lesser General Public License v3.0 | 5 votes |
def __init__(self, rate, data_format=None, **kwargs): super(SpatialDropout3D, self).__init__(rate, **kwargs) if data_format is None: data_format = K.image_data_format() if data_format not in {'channels_last', 'channels_first'}: raise ValueError('data_format must be in ' '{"channels_last", "channels_first"}') self.data_format = data_format self.input_spec = InputSpec(ndim=5)
Example #3
Source File: densenet.py From ImageAI with MIT License | 5 votes |
def preprocess_input(x, data_format=None): """Preprocesses a tensor encoding a batch of images. # Arguments x: input Numpy tensor, 4D. data_format: data format of the image tensor. # Returns Preprocessed tensor. """ if data_format is None: data_format = K.image_data_format() assert data_format in {'channels_last', 'channels_first'} if data_format == 'channels_first': if x.ndim == 3: # 'RGB'->'BGR' x = x[::-1, ...] # Zero-center by mean pixel x[0, :, :] -= 103.939 x[1, :, :] -= 116.779 x[2, :, :] -= 123.68 else: x = x[:, ::-1, ...] x[:, 0, :, :] -= 103.939 x[:, 1, :, :] -= 116.779 x[:, 2, :, :] -= 123.68 else: # 'RGB'->'BGR' x = x[..., ::-1] # Zero-center by mean pixel x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 x *= 0.017 # scale values return x
Example #4
Source File: densenet.py From ImageAI with MIT License | 5 votes |
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4): ''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout Args: ip: Input keras tensor nb_filter: number of filters bottleneck: add bottleneck block dropout_rate: dropout rate weight_decay: weight decay factor Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck) ''' concat_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip) x = Activation('relu')(x) if bottleneck: inter_channel = nb_filter * 4 # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False, kernel_regularizer=l2(weight_decay))(x) x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x) x = Activation('relu')(x) x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x) if dropout_rate: x = Dropout(dropout_rate)(x) return x
Example #5
Source File: densenet.py From ImageAI with MIT License | 5 votes |
def __dense_block(x, nb_layers, nb_filter, growth_rate, bottleneck=False, dropout_rate=None, weight_decay=1e-4, grow_nb_filters=True, return_concat_list=False): ''' Build a dense_block where the output of each conv_block is fed to subsequent ones Args: x: keras tensor nb_layers: the number of layers of conv_block to append to the model. nb_filter: number of filters growth_rate: growth rate bottleneck: bottleneck block dropout_rate: dropout rate weight_decay: weight decay factor grow_nb_filters: flag to decide to allow number of filters to grow return_concat_list: return the list of feature maps along with the actual output Returns: keras tensor with nb_layers of conv_block appended ''' concat_axis = 1 if K.image_data_format() == 'channels_first' else -1 x_list = [x] for i in range(nb_layers): cb = __conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay) x_list.append(cb) x = concatenate([x, cb], axis=concat_axis) if grow_nb_filters: nb_filter += growth_rate if return_concat_list: return x, nb_filter, x_list else: return x, nb_filter
Example #6
Source File: imagenet_utils.py From ImageAI with MIT License | 5 votes |
def preprocess_input(x, data_format=None): """Preprocesses a tensor encoding a batch of images. # Arguments x: input Numpy tensor, 4D. data_format: data format of the image tensor. # Returns Preprocessed tensor. """ if data_format is None: data_format = K.image_data_format() assert data_format in {'channels_last', 'channels_first'} if data_format == 'channels_first': if x.ndim == 3: # 'RGB'->'BGR' x = x[::-1, ...] # Zero-center by mean pixel x[0, :, :] -= 103.939 x[1, :, :] -= 116.779 x[2, :, :] -= 123.68 else: x = x[:, ::-1, ...] x[:, 0, :, :] -= 103.939 x[:, 1, :, :] -= 116.779 x[:, 2, :, :] -= 123.68 else: # 'RGB'->'BGR' x = x[..., ::-1] # Zero-center by mean pixel x[..., 0] -= 103.939 x[..., 1] -= 116.779 x[..., 2] -= 123.68 return x
Example #7
Source File: resnet_model.py From class-balanced-loss with MIT License | 4 votes |
def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, (1, 1), kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters3, (1, 1), kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2c')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #8
Source File: resnet_cifar_model.py From models with Apache License 2.0 | 4 votes |
def identity_building_block(input_tensor, kernel_size, filters, stage, block, training=None): """The identity block is the block that has no conv layer at shortcut. Arguments: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: current block label, used for generating layer names training: Only used if training keras model with Estimator. In other scenarios it is handled automatically. Returns: Output tensor for the block. """ filters1, filters2 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization( axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x, training=training) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x, training=training) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #9
Source File: resnet_model.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, (1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters3, (1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2c')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #10
Source File: resnet_cifar_model.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def identity_building_block(input_tensor, kernel_size, filters, stage, block, training=None): """The identity block is the block that has no conv layer at shortcut. Arguments: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names training: Only used if training keras model with Estimator. In other scenarios it is handled automatically. Returns: Output tensor for the block. """ filters1, filters2 = filters if tf.keras.backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = tf.keras.layers.Conv2D(filters1, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = tf.keras.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a', momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)( x, training=training) x = tf.keras.layers.Activation('relu')(x) x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = tf.keras.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b', momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)( x, training=training) x = tf.keras.layers.add([x, input_tensor]) x = tf.keras.layers.Activation('relu')(x) return x
Example #11
Source File: resnet_cifar_model.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 4 votes |
def identity_building_block(input_tensor, kernel_size, filters, stage, block, training=None): """The identity block is the block that has no conv layer at shortcut. Arguments: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: current block label, used for generating layer names training: Only used if training keras model with Estimator. In other scenarios it is handled automatically. Returns: Output tensor for the block. """ filters1, filters2 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization( axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x, training=training) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization( axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x, training=training) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #12
Source File: resnet.py From delta with Apache License 2.0 | 4 votes |
def __init__(self, kernel_size, filters, stage, block, strides=(2, 2)): """A block that has a conv layer at shortcut. # Arguments kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names strides: Strides for the first conv layer in the block. # Returns Output tensor for the block. Note that from stage 3, the first conv layer at main path is with strides=(2, 2) And the shortcut should have strides=(2, 2) as well """ super().__init__(name='conv_block' + str(stage) + block) filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' self.conv1 = layers.Conv2D( filters1, (1, 1), strides=strides, kernel_initializer='he_normal', name=conv_name_base + '2a') self.bn1 = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a') self.act1 = layers.Activation('relu') self.conv2 = layers.Conv2D( filters2, kernel_size, padding='same', kernel_initializer='he_normal', name=conv_name_base + '2b') self.bn2 = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b') self.act2 = layers.Activation('relu') self.conv3 = layers.Conv2D( filters3, (1, 1), kernel_initializer='he_normal', name=conv_name_base + '2c') self.bn3 = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c') self.shortcut_conv = layers.Conv2D( filters3, (1, 1), strides=strides, kernel_initializer='he_normal', name=conv_name_base + '1') self.shortcut_bn = layers.BatchNormalization( axis=bn_axis, name=bn_name_base + '1') self.add = layers.Add() self.act = layers.Activation('relu') #pylint: disable=arguments-differ
Example #13
Source File: resnet.py From delta with Apache License 2.0 | 4 votes |
def __init__(self, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ super().__init__(name='identity' + str(stage) + block) filters1, filters2, filters3 = filters if K.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' self.conv1 = layers.Conv2D( filters1, (1, 1), kernel_initializer='he_normal', name=conv_name_base + '2a') self.bn1 = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a') self.act1 = layers.Activation('relu') self.conv2 = layers.Conv2D( filters2, kernel_size, padding='same', kernel_initializer='he_normal', name=conv_name_base + '2b') self.bn2 = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b') self.act2 = layers.Activation('relu') self.conv3 = layers.Conv2D( filters3, (1, 1), kernel_initializer='he_normal', name=conv_name_base + '2c') self.bn3 = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c') self.add = layers.Add() self.act = layers.Activation('relu') #pylint: disable=arguments-differ
Example #14
Source File: resnet_model.py From ml-on-gcp with Apache License 2.0 | 4 votes |
def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, (1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters3, (1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2c')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #15
Source File: resnet_cifar_model.py From ml-on-gcp with Apache License 2.0 | 4 votes |
def identity_building_block(input_tensor, kernel_size, filters, stage, block, training=None): """The identity block is the block that has no conv layer at shortcut. Arguments: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names training: Only used if training keras model with Estimator. In other scenarios it is handled automatically. Returns: Output tensor for the block. """ filters1, filters2 = filters if tf.keras.backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = tf.keras.layers.Conv2D(filters1, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = tf.keras.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a', momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)( x, training=training) x = tf.keras.layers.Activation('relu')(x) x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer= tf.keras.regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = tf.keras.layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b', momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)( x, training=training) x = tf.keras.layers.add([x, input_tensor]) x = tf.keras.layers.Activation('relu')(x) return x
Example #16
Source File: resnet_model.py From tpu_models with Apache License 2.0 | 4 votes |
def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. Args: input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names Returns: Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, (1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, use_bias=False, padding='same', kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters3, (1, 1), use_bias=False, kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2c')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #17
Source File: resnet_model.py From training_results_v0.5 with Apache License 2.0 | 4 votes |
def identity_block(input_tensor, kernel_size, filters, stage, block): """The identity block is the block that has no conv layer at shortcut. # Arguments input_tensor: input tensor kernel_size: default 3, the kernel size of middle conv layer at main path filters: list of integers, the filters of 3 conv layer at main path stage: integer, current stage label, used for generating layer names block: 'a','b'..., current block label, used for generating layer names # Returns Output tensor for the block. """ filters1, filters2, filters3 = filters if backend.image_data_format() == 'channels_last': bn_axis = 3 else: bn_axis = 1 conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = layers.Conv2D(filters1, (1, 1), kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2a')(input_tensor) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2a')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters2, kernel_size, padding='same', kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2b')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2b')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(filters3, (1, 1), kernel_initializer='he_normal', kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY), bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY), name=conv_name_base + '2c')(x) x = layers.BatchNormalization(axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON, name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = layers.Activation('relu')(x) return x
Example #18
Source File: inceptionv3.py From ImageAI with MIT License | 4 votes |
def conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(1, 1), name=None): """Utility function to apply conv + BN. # Arguments x: input tensor. filters: filters in `Conv2D`. num_row: height of the convolution kernel. num_col: width of the convolution kernel. padding: padding mode in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_conv'` for the convolution and `name + '_bn'` for the batch norm layer. # Returns Output tensor after applying `Conv2D` and `BatchNormalization`. """ if name is not None: bn_name = name + '_bn' conv_name = name + '_conv' else: bn_name = None conv_name = None if K.image_data_format() == 'channels_first': bn_axis = 1 else: bn_axis = 3 x = Conv2D( filters, (num_row, num_col), strides=strides, padding=padding, use_bias=False, name=conv_name)(x) x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) x = Activation('relu', name=name)(x) return x