Python tensorflow.python.keras.backend.get_session() Examples
The following are 4
code examples of tensorflow.python.keras.backend.get_session().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.keras.backend
, or try the search function
.
Example #1
Source File: __init__.py From ImageAI with MIT License | 5 votes |
def save_model_to_tensorflow(self, new_model_folder, new_model_name=""): """ 'save_model_to_tensorflow' function allows you to save your loaded Keras (.h5) model and save it to the Tensorflow (.pb) model format. - new_model_folder (required), the path to the folder you want the converted Tensorflow model to be saved - new_model_name (required), the desired filename for your converted Tensorflow model e.g 'my_new_model.pb' :param new_model_folder: :param new_model_name: :return: """ if(self.__modelLoaded == True): out_prefix = "output_" output_dir = new_model_folder if os.path.exists(output_dir) == False: os.mkdir(output_dir) model_name = os.path.join(output_dir, new_model_name) keras_model = self.__model_collection[0] out_nodes = [] for i in range(len(keras_model.outputs)): out_nodes.append(out_prefix + str(i + 1)) tf.identity(keras_model.output[i], out_prefix + str(i + 1)) sess = K.get_session() from tensorflow.python.framework import graph_util, graph_io init_graph = sess.graph.as_graph_def() main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes) graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False) print("Tensorflow Model Saved")
Example #2
Source File: dense_model.py From FATE with Apache License 2.0 | 5 votes |
def _init_session(): from tensorflow.python.keras import backend sess = backend.get_session() tf.get_default_graph() set_session(sess) return sess
Example #3
Source File: nn_model.py From FATE with Apache License 2.0 | 5 votes |
def _init_session(): from tensorflow.python.keras import backend sess = backend.get_session() tf.get_default_graph() set_session(sess) return sess
Example #4
Source File: hooks.py From camera-trap-classifier with MIT License | 5 votes |
def on_train_begin(self, logs=None): K.get_session().run(tf.tables_initializer())