Python object_detection.builders.box_predictor_builder.build_convolutional_box_predictor() Examples
The following are 30
code examples of object_detection.builders.box_predictor_builder.build_convolutional_box_predictor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.builders.box_predictor_builder
, or try the search function
.
Example #1
Source File: convolutional_box_predictor_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_get_boxes_for_one_aspect_ratio_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[1], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat(box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
Example #2
Source File: convolutional_box_predictor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) class_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, class_predictions_with_background) (box_encodings, class_predictions_with_background) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background.shape, [4, 320, num_classes_without_background+1])
Example #3
Source File: convolutional_box_predictor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_get_boxes_for_one_aspect_ratio_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[1], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat(box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
Example #4
Source File: convolutional_box_predictor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_get_boxes_for_five_aspect_ratios_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
Example #5
Source File: convolutional_box_predictor_tf1_test.py From models with Apache License 2.0 | 5 votes |
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) class_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, class_predictions_with_background) (box_encodings, class_predictions_with_background) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background.shape, [4, 320, num_classes_without_background+1])
Example #6
Source File: convolutional_box_predictor_tf1_test.py From models with Apache License 2.0 | 5 votes |
def test_get_boxes_for_one_aspect_ratio_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[1], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat(box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
Example #7
Source File: convolutional_box_predictor_tf1_test.py From models with Apache License 2.0 | 5 votes |
def test_get_boxes_for_five_aspect_ratios_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
Example #8
Source File: convolutional_box_predictor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) class_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, class_predictions_with_background) (box_encodings, class_predictions_with_background) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background.shape, [4, 320, num_classes_without_background+1])
Example #9
Source File: convolutional_box_predictor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_get_boxes_for_one_aspect_ratio_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[1], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat(box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
Example #10
Source File: convolutional_box_predictor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_get_boxes_for_five_aspect_ratios_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
Example #11
Source File: convolutional_box_predictor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) class_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, class_predictions_with_background) (box_encodings, class_predictions_with_background) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background.shape, [4, 320, num_classes_without_background+1])
Example #12
Source File: convolutional_box_predictor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_get_boxes_for_five_aspect_ratios_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
Example #13
Source File: convolutional_box_predictor_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_get_boxes_for_five_aspect_ratios_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
Example #14
Source File: convolutional_box_predictor_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) class_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, class_predictions_with_background) (box_encodings, class_predictions_with_background) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background.shape, [4, 320, num_classes_without_background+1])
Example #15
Source File: convolutional_box_predictor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_get_boxes_for_five_aspect_ratios_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 320, 1])
Example #16
Source File: convolutional_box_predictor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_get_boxes_for_one_aspect_ratio_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[1], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat(box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
Example #17
Source File: convolutional_box_predictor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_get_multi_class_predictions_for_five_aspect_ratios_per_location( self): num_classes_without_background = 6 image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=num_classes_without_background, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) class_predictions_with_background = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, class_predictions_with_background) (box_encodings, class_predictions_with_background) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 320, 1, 4]) self.assertAllEqual(class_predictions_with_background.shape, [4, 320, num_classes_without_background+1])
Example #18
Source File: convolutional_box_predictor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def test_get_boxes_for_one_aspect_ratio_per_location(self): def graph_fn(image_features): conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[1], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat(box_predictions[ box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) return (box_encodings, objectness_predictions) image_features = np.random.rand(4, 8, 8, 64).astype(np.float32) (box_encodings, objectness_predictions) = self.execute(graph_fn, [image_features]) self.assertAllEqual(box_encodings.shape, [4, 64, 1, 4]) self.assertAllEqual(objectness_predictions.shape, [4, 64, 1])
Example #19
Source File: convolutional_box_predictor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 4 votes |
def test_get_predictions_with_feature_maps_of_dynamic_shape( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #20
Source File: convolutional_box_predictor_test.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def test_get_predictions_with_feature_maps_of_dynamic_shape( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #21
Source File: convolutional_box_predictor_test.py From g-tensorflow-models with Apache License 2.0 | 4 votes |
def test_use_depthwise_convolution(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor_depthwise/biases', 'BoxPredictor/BoxEncodingPredictor_depthwise/depthwise_weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor_depthwise/biases', 'BoxPredictor/ClassPredictor_depthwise/depthwise_weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #22
Source File: convolutional_box_predictor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 4 votes |
def test_use_depthwise_convolution(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor_depthwise/biases', 'BoxPredictor/BoxEncodingPredictor_depthwise/depthwise_weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor_depthwise/biases', 'BoxPredictor/ClassPredictor_depthwise/depthwise_weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #23
Source File: convolutional_box_predictor_test.py From MAX-Object-Detector with Apache License 2.0 | 4 votes |
def test_use_depthwise_convolution(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor_depthwise/biases', 'BoxPredictor/BoxEncodingPredictor_depthwise/depthwise_weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor_depthwise/biases', 'BoxPredictor/ClassPredictor_depthwise/depthwise_weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #24
Source File: convolutional_box_predictor_test.py From vehicle_counting_tensorflow with MIT License | 4 votes |
def test_use_depthwise_convolution(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor_depthwise/biases', 'BoxPredictor/BoxEncodingPredictor_depthwise/depthwise_weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor_depthwise/biases', 'BoxPredictor/ClassPredictor_depthwise/depthwise_weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #25
Source File: convolutional_box_predictor_tf1_test.py From models with Apache License 2.0 | 4 votes |
def test_get_predictions_with_feature_maps_of_dynamic_shape( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #26
Source File: convolutional_box_predictor_tf1_test.py From models with Apache License 2.0 | 4 votes |
def test_use_depthwise_convolution(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=3, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor_depthwise/biases', 'BoxPredictor/BoxEncodingPredictor_depthwise/depthwise_weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor_depthwise/biases', 'BoxPredictor/ClassPredictor_depthwise/depthwise_weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #27
Source File: convolutional_box_predictor_test.py From vehicle_counting_tensorflow with MIT License | 4 votes |
def test_get_predictions_with_feature_maps_of_dynamic_shape( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #28
Source File: convolutional_box_predictor_test.py From MAX-Object-Detector with Apache License 2.0 | 4 votes |
def test_get_predictions_with_feature_maps_of_dynamic_shape( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #29
Source File: convolutional_box_predictor_test.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def test_get_predictions_with_feature_maps_of_dynamic_shape( self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, use_dropout=True, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)
Example #30
Source File: convolutional_box_predictor_test.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def test_use_depthwise_convolution(self): image_features = tf.placeholder(dtype=tf.float32, shape=[4, None, None, 64]) conv_box_predictor = ( box_predictor_builder.build_convolutional_box_predictor( is_training=False, num_classes=0, conv_hyperparams_fn=self._build_arg_scope_with_conv_hyperparams(), min_depth=0, max_depth=32, num_layers_before_predictor=1, dropout_keep_prob=0.8, kernel_size=1, box_code_size=4, use_dropout=True, use_depthwise=True)) box_predictions = conv_box_predictor.predict( [image_features], num_predictions_per_location=[5], scope='BoxPredictor') box_encodings = tf.concat( box_predictions[box_predictor.BOX_ENCODINGS], axis=1) objectness_predictions = tf.concat( box_predictions[box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND], axis=1) init_op = tf.global_variables_initializer() resolution = 32 expected_num_anchors = resolution*resolution*5 with self.test_session() as sess: sess.run(init_op) (box_encodings_shape, objectness_predictions_shape) = sess.run( [tf.shape(box_encodings), tf.shape(objectness_predictions)], feed_dict={image_features: np.random.rand(4, resolution, resolution, 64)}) actual_variable_set = set( [var.op.name for var in tf.trainable_variables()]) self.assertAllEqual(box_encodings_shape, [4, expected_num_anchors, 1, 4]) self.assertAllEqual(objectness_predictions_shape, [4, expected_num_anchors, 1]) expected_variable_set = set([ 'BoxPredictor/Conv2d_0_1x1_32/biases', 'BoxPredictor/Conv2d_0_1x1_32/weights', 'BoxPredictor/BoxEncodingPredictor_depthwise/biases', 'BoxPredictor/BoxEncodingPredictor_depthwise/depthwise_weights', 'BoxPredictor/BoxEncodingPredictor/biases', 'BoxPredictor/BoxEncodingPredictor/weights', 'BoxPredictor/ClassPredictor_depthwise/biases', 'BoxPredictor/ClassPredictor_depthwise/depthwise_weights', 'BoxPredictor/ClassPredictor/biases', 'BoxPredictor/ClassPredictor/weights']) self.assertEqual(expected_variable_set, actual_variable_set)