Python blocks.initialization.Uniform() Examples
The following are 4
code examples of blocks.initialization.Uniform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
blocks.initialization
, or try the search function
.
Example #1
Source File: test_initialization.py From attention-lvcsr with MIT License | 6 votes |
def test_uniform(): rng = numpy.random.RandomState(1) def check_uniform(rng, mean, width, std, shape): weights = Uniform(mean=mean, width=width, std=std).generate(rng, shape) assert weights.shape == shape assert weights.dtype == theano.config.floatX assert_allclose(weights.mean(), mean, atol=1e-2) if width is not None: std_ = width / numpy.sqrt(12) else: std_ = std assert_allclose(std_, weights.std(), atol=1e-2) yield check_uniform, rng, 0, 0.05, None, (500, 600) yield check_uniform, rng, 0, None, 0.001, (600, 500) yield check_uniform, rng, 5, None, 0.004, (700, 300) assert_raises(ValueError, Uniform, 0, 1, 1)
Example #2
Source File: test_sequence_generator2.py From blocks-extras with MIT License | 6 votes |
def setUp(self): self.readout = SoftmaxReadout( input_names=['states1', 'states2'], num_tokens=4, input_dims=[2, 3], weights_init=Uniform(width=1.0), biases_init=Uniform(width=1.0), seed=1) self.readout.initialize() self.states1 = numpy.array( [[[1., 2.]], [[2., 1.]]], dtype=theano.config.floatX) self.states2 = numpy.array( [[[3., 4., 5.]], [[5., 4., 3.]]], dtype=theano.config.floatX) self.merged = ( self.states1.dot(self.readout.merge.children[0].W.get_value()) + self.states2.dot(self.readout.merge.children[1].W.get_value()) + self.readout.post_merge.parameters[0].get_value())
Example #3
Source File: model.py From blocks-char-rnn with MIT License | 5 votes |
def initialize(to_init): for bricks in to_init: bricks.weights_init = initialization.Uniform(width=0.08) bricks.biases_init = initialization.Constant(0) bricks.initialize()
Example #4
Source File: def_autoencoder_training.py From cpae with MIT License | 4 votes |
def initialize_data_and_model(config, train_phase, layout='dict'): c = config fuel_path = fuel.config.data_path[0] vocab_main = None vocab_keys = None if not c['encoder']: if not c['vocab_keys_path']: raise ValueError('Error: Should specify vocab_keys_path when no encoder') vocab_keys = Vocabulary( os.path.join(fuel.config.data_path[0], c['vocab_keys_path'])) if c['vocab_path']: vocab_main = Vocabulary( os.path.join(fuel.config.data_path[0], c['vocab_path'])) # TODO: change name of class LanguageModellingData... very ill-named. data = LanguageModellingData(c['data_path'], layout, vocab=vocab_main) vocab_main = data.vocab model = Seq2Seq(c['emb_dim'], c['dim'], c['num_input_words'], c['num_output_words'], data.vocab, proximity_coef = c['proximity_coef'], proximity_distance = c['proximity_distance'], encoder = c['encoder'], decoder = c['decoder'], shared_rnn = c['shared_rnn'], translate_layer = c['translate_layer'], word_dropout = c['word_dropout'], tied_in_out = c['tied_in_out'], vocab_keys = vocab_keys, reconstruction_coef = c['reconstruction_coef'], provide_targets = c['provide_targets'], weights_init=Uniform(width=0.1), biases_init=Constant(0.)) model.initialize() if c['embedding_path'] and ((train_phase or c['freeze_pretrained']) or c['provide_targets']): if c['provide_targets'] and c['freeze_pretrained']: raise ValueError("Can't provide_targets and use freeze_pretrained." "In that case, simply use freeze_pretrained") # if encoder embeddings are frozen, then we should load them # as they're not saved with the models parameters emb_full_path = os.path.join(fuel_path, c['embedding_path']) embedding_matrix = numpy.load(emb_full_path) if c['provide_targets']: model.set_def_embeddings(embedding_matrix, 'target') logger.debug("Pre-trained targets loaded") else: model.set_def_embeddings(embedding_matrix, 'main') logger.debug("Pre-trained encoder embeddings loaded") return data, model