Python tensorflow.python.ops.metrics_impl._streaming_confusion_matrix() Examples
The following are 30
code examples of tensorflow.python.ops.metrics_impl._streaming_confusion_matrix().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.metrics_impl
, or try the search function
.
Example #1
Source File: tf_metrics.py From FoolNLTK with Apache License 2.0 | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #2
Source File: tf_metrics.py From pynlp with MIT License | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #3
Source File: tf_metrics.py From pynlp with MIT License | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #4
Source File: tf_metrics.py From pynlp with MIT License | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #5
Source File: calculate_model_score.py From pynlp with MIT License | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #6
Source File: calculate_model_score.py From pynlp with MIT License | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #7
Source File: tf_metrics.py From pynlp with MIT License | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #8
Source File: tf_metrics.py From pynlp with MIT License | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #9
Source File: tf_metrics.py From pynlp with MIT License | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #10
Source File: tf_metrics.py From FoolNLTK with Apache License 2.0 | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #11
Source File: tf_metrics.py From bert-chinese-ner with MIT License | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #12
Source File: tf_metrics.py From FoolNLTK with Apache License 2.0 | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #13
Source File: tf_metrics.py From albert-chinese-ner with MIT License | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #14
Source File: tf_metrics.py From albert-chinese-ner with MIT License | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #15
Source File: tf_metrics.py From albert-chinese-ner with MIT License | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #16
Source File: tf_metrics.py From BERT-for-Sequence-Labeling-and-Text-Classification with Apache License 2.0 | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #17
Source File: tf_metrics.py From BERT-for-Sequence-Labeling-and-Text-Classification with Apache License 2.0 | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #18
Source File: tf_metrics.py From BERT-for-Sequence-Labeling-and-Text-Classification with Apache License 2.0 | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #19
Source File: calculate_model_score.py From BERT-for-Sequence-Labeling-and-Text-Classification with Apache License 2.0 | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #20
Source File: calculate_model_score.py From BERT-for-Sequence-Labeling-and-Text-Classification with Apache License 2.0 | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #21
Source File: metrics.py From curriculum with GNU General Public License v3.0 | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #22
Source File: tf_metrics.py From tudouNLP with MIT License | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #23
Source File: tf_metrics.py From tudouNLP with MIT License | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #24
Source File: __init__.py From tf_metrics with Apache License 2.0 | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #25
Source File: __init__.py From tf_metrics with Apache License 2.0 | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #26
Source File: __init__.py From tf_metrics with Apache License 2.0 | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #27
Source File: tf_metrics.py From curriculum with GNU General Public License v3.0 | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class precision metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)
Example #28
Source File: tf_metrics.py From curriculum with GNU General Public License v3.0 | 5 votes |
def recall(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): """Multi-class recall metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, re, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) _, op, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (re, op)
Example #29
Source File: tf_metrics.py From curriculum with GNU General Public License v3.0 | 5 votes |
def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro', beta=1): """Multi-class fbeta metric for Tensorflow Parameters ---------- labels : Tensor of tf.int32 or tf.int64 The true labels predictions : Tensor of tf.int32 or tf.int64 The predictions, same shape as labels num_classes : int The number of classes pos_indices : list of int, optional The indices of the positive classes, default is all weights : Tensor of tf.int32, optional Mask, must be of compatible shape with labels average : str, optional 'micro': counts the total number of true positives, false positives, and false negatives for the classes in `pos_indices` and infer the metric from it. 'macro': will compute the metric separately for each class in `pos_indices` and average. Will not account for class imbalance. 'weighted': will compute the metric separately for each class in `pos_indices` and perform a weighted average by the total number of true labels for each class. beta : int, optional Weight of precision in harmonic mean Returns ------- tuple of (scalar float Tensor, update_op) """ cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) _, _, fbeta = metrics_from_confusion_matrix( cm, pos_indices, average=average, beta=beta) _, _, op = metrics_from_confusion_matrix( op, pos_indices, average=average, beta=beta) return (fbeta, op)
Example #30
Source File: metrics.py From curriculum with GNU General Public License v3.0 | 5 votes |
def precision(labels, predictions, num_classes, pos_indices=None, weights=None, average='micro'): cm, op = _streaming_confusion_matrix( labels, predictions, num_classes, weights) pr, _, _ = metrics_from_confusion_matrix( cm, pos_indices, average=average) op, _, _ = metrics_from_confusion_matrix( op, pos_indices, average=average) return (pr, op)