Python tensorflow.python.summary.summary.histogram() Examples

The following are 30 code examples of tensorflow.python.summary.summary.histogram(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.summary.summary , or try the search function .
Example #1
Source File: summaries.py    From tensornets with MIT License 6 votes vote down vote up
def _add_scalar_summary(tensor, tag=None):
  """Add a scalar summary operation for the tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use or the rank is not 0.
  """
  tensor.get_shape().assert_has_rank(0)
  tag = tag or '%s_summary' % tensor.op.name
  return summary.scalar(tag, tensor) 
Example #2
Source File: training.py    From keras-lambda with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '_gradient', grad_values))
      summaries.append(
          summary.histogram(var.op.name + '_gradient_norm',
                            clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #3
Source File: learning.py    From keras-lambda with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.histogram(var.op.name + '/gradient_norm',
                            clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #4
Source File: learning.py    From mtl-ssl with Apache License 2.0 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      log.warn('Var %s has no gradient', var.op.name)

  return summaries 
Example #5
Source File: summaries.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def _add_scalar_summary(tensor, tag=None):
  """Add a scalar summary operation for the tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use or the rank is not 0.
  """
  tensor.get_shape().assert_has_rank(0)
  tag = tag or '%s_summary' % tensor.op.name
  return summary.scalar(tag, tensor) 
Example #6
Source File: training.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '_gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '_gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #7
Source File: learning.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #8
Source File: learning.py    From CVTron with Apache License 2.0 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.
  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).
  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #9
Source File: learning.py    From CVTron with Apache License 2.0 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.
  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).
  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #10
Source File: learning.py    From CVTron with Apache License 2.0 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.
  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).
  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #11
Source File: training.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '_gradient', grad_values))
      summaries.append(
          summary.histogram(var.op.name + '_gradient_norm',
                            clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #12
Source File: learning.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.histogram(var.op.name + '/gradient_norm',
                            clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #13
Source File: learning.py    From ctw-baseline with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #14
Source File: summaries.py    From lambda-packs with MIT License 6 votes vote down vote up
def _add_scalar_summary(tensor, tag=None):
  """Add a scalar summary operation for the tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use or the rank is not 0.
  """
  tensor.get_shape().assert_has_rank(0)
  tag = tag or '%s_summary' % tensor.op.name
  return summary.scalar(tag, tensor) 
Example #15
Source File: training.py    From lambda-packs with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '_gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '_gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #16
Source File: learning.py    From lambda-packs with MIT License 6 votes vote down vote up
def add_gradients_summaries(grads_and_vars):
  """Add summaries to gradients.

  Args:
    grads_and_vars: A list of gradient to variable pairs (tuples).

  Returns:
    The list of created summaries.
  """
  summaries = []
  for grad, var in grads_and_vars:
    if grad is not None:
      if isinstance(grad, ops.IndexedSlices):
        grad_values = grad.values
      else:
        grad_values = grad
      summaries.append(
          summary.histogram(var.op.name + '/gradient', grad_values))
      summaries.append(
          summary.scalar(var.op.name + '/gradient_norm',
                         clip_ops.global_norm([grad_values])))
    else:
      logging.info('Var %s has no gradient', var.op.name)

  return summaries 
Example #17
Source File: summaries.py    From lambda-packs with MIT License 5 votes vote down vote up
def _add_histogram_summary(tensor, tag=None):
  """Add a summary operation for the histogram of a tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use.
  """
  tag = tag or '%s_summary' % tensor.op.name
  return summary.histogram(tag, tensor) 
Example #18
Source File: summaries.py    From keras-lambda with MIT License 5 votes vote down vote up
def summarize_tensor(tensor, tag=None):
  """Summarize a tensor using a suitable summary type.

  This function adds a summary op for `tensor`. The type of summary depends on
  the shape of `tensor`. For scalars, a `scalar_summary` is created, for all
  other tensors, `histogram_summary` is used.

  Args:
    tensor: The tensor to summarize
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The summary op created or None for string tensors.
  """
  # Skips string tensors and boolean tensors (not handled by the summaries).
  if (tensor.dtype.is_compatible_with(dtypes.string) or
      tensor.dtype.base_dtype == dtypes.bool):
    return None

  if tensor.get_shape().ndims == 0:
    # For scalars, use a scalar summary.
    return _add_scalar_summary(tensor, tag)
  else:
    # We may land in here if the rank is still unknown. The histogram won't
    # hurt if this ends up being a scalar.
    return _add_histogram_summary(tensor, tag) 
Example #19
Source File: summaries.py    From keras-lambda with MIT License 5 votes vote down vote up
def _add_histogram_summary(tensor, tag=None):
  """Add a summary operation for the histogram of a tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use.
  """
  tag = tag or '%s_summary' % tensor.op.name
  return summary.histogram(tag, tensor) 
Example #20
Source File: dnn.py    From keras-lambda with MIT License 5 votes vote down vote up
def _add_hidden_layer_summary(value, tag):
  summary.scalar("%s_fraction_of_zero_values" % tag, nn.zero_fraction(value))
  summary.histogram("%s_activation" % tag, value) 
Example #21
Source File: composable_model.py    From keras-lambda with MIT License 5 votes vote down vote up
def _add_hidden_layer_summary(self, value, tag):
    # TODO(zakaria): Move this code to tf.learn and add test.
    summary.scalar("%s/fraction_of_zero_values" % tag, nn.zero_fraction(value))
    summary.histogram("%s/activation" % tag, value) 
Example #22
Source File: summaries.py    From tensornets with MIT License 5 votes vote down vote up
def _add_histogram_summary(tensor, tag=None):
  """Add a summary operation for the histogram of a tensor.

  Args:
    tensor: The tensor to summarize.
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The created histogram summary.

  Raises:
    ValueError: If the tag is already in use.
  """
  tag = tag or '%s_summary' % tensor.op.name
  return summary.histogram(tag, tensor) 
Example #23
Source File: summaries.py    From tensornets with MIT License 5 votes vote down vote up
def summarize_tensor(tensor, tag=None):
  """Summarize a tensor using a suitable summary type.

  This function adds a summary op for `tensor`. The type of summary depends on
  the shape of `tensor`. For scalars, a `scalar_summary` is created, for all
  other tensors, `histogram_summary` is used.

  Args:
    tensor: The tensor to summarize
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The summary op created or None for string tensors.
  """
  # Skips string tensors and boolean tensors (not handled by the summaries).
  if (tensor.dtype.is_compatible_with(dtypes.string) or
      tensor.dtype.base_dtype == dtypes.bool):
    return None

  if tensor.get_shape().ndims == 0:
    # For scalars, use a scalar summary.
    return _add_scalar_summary(tensor, tag)
  else:
    # We may land in here if the rank is still unknown. The histogram won't
    # hurt if this ends up being a scalar.
    return _add_histogram_summary(tensor, tag) 
Example #24
Source File: dnn_linear_combined.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def _add_layer_summary(value, tag):
  summary.scalar('%s/fraction_of_zero_values' % tag, nn.zero_fraction(value))
  summary.histogram('%s/activation' % tag, value) 
Example #25
Source File: dnn.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def _add_hidden_layer_summary(value, tag):
  summary.scalar('%s/fraction_of_zero_values' % tag, nn.zero_fraction(value))
  summary.histogram('%s/activation' % tag, value) 
Example #26
Source File: summaries.py    From tf-slim with Apache License 2.0 5 votes vote down vote up
def summarize_tensor(tensor, tag=None):
  """Summarize a tensor using a suitable summary type.

  This function adds a summary op for `tensor`. The type of summary depends on
  the shape of `tensor`. For scalars, a `scalar_summary` is created, for all
  other tensors, `histogram_summary` is used.

  Args:
    tensor: The tensor to summarize
    tag: The tag to use, if None then use tensor's op's name.

  Returns:
    The summary op created or None for string tensors.
  """
  # Skips string tensors and boolean tensors (not handled by the summaries).
  if (tensor.dtype.is_compatible_with(dtypes.string) or
      tensor.dtype.base_dtype == dtypes.bool):
    return None

  if tensor.get_shape().ndims == 0:
    # For scalars, use a scalar summary.
    return _add_scalar_summary(tensor, tag)
  else:
    # We may land in here if the rank is still unknown. The histogram won't
    # hurt if this ends up being a scalar.
    return _add_histogram_summary(tensor, tag) 
Example #27
Source File: composable_model.py    From lambda-packs with MIT License 5 votes vote down vote up
def _add_hidden_layer_summary(self, value, tag):
    # TODO(zakaria): Move this code to tf.learn and add test.
    summary.scalar("%s/fraction_of_zero_values" % tag, nn.zero_fraction(value))
    summary.histogram("%s/activation" % tag, value) 
Example #28
Source File: summaries.py    From tf-slim with Apache License 2.0 5 votes vote down vote up
def add_histogram_summaries(tensors, prefix=None):
  """Adds a histogram summary for each of the given tensors.

  Args:
    tensors: A list of variable or op tensors.
    prefix: An optional prefix for the summary names.

  Returns:
    A list of scalar `Tensors` of type `string` whose contents are the
    serialized `Summary` protocol buffer.
  """
  summary_ops = []
  for tensor in tensors:
    summary_ops.append(add_histogram_summary(tensor, prefix=prefix))
  return summary_ops 
Example #29
Source File: summaries.py    From tf-slim with Apache License 2.0 5 votes vote down vote up
def add_histogram_summary(tensor, name=None, prefix=None):
  """Adds a histogram summary for the given tensor.

  Args:
    tensor: A variable or op tensor.
    name: The optional name for the summary.
    prefix: An optional prefix for the summary names.

  Returns:
    A scalar `Tensor` of type `string` whose contents are the serialized
    `Summary` protocol buffer.
  """
  return summary.histogram(
      _get_summary_name(tensor, name, prefix), tensor) 
Example #30
Source File: dnn.py    From lambda-packs with MIT License 5 votes vote down vote up
def _add_hidden_layer_summary(value, tag):
  summary.scalar("%s_fraction_of_zero_values" % tag, nn.zero_fraction(value))
  summary.histogram("%s_activation" % tag, value)