Python tensorflow.python.summary.summary.merge_all() Examples

The following are 18 code examples of tensorflow.python.summary.summary.merge_all(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.summary.summary , or try the search function .
Example #1
Source File: learning_test.py    From keras-lambda with MIT License 6 votes vote down vote up
def testTrainWithNoneAsLogdirWhenUsingSummariesRaisesError(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      summary.scalar('total_loss', total_loss)

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)
      summary_op = summary.merge_all()

      with self.assertRaises(ValueError):
        learning.train(
            train_op, None, number_of_steps=300, summary_op=summary_op) 
Example #2
Source File: summaries_test.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def verify_scalar_summary_is_written(self, print_summary):
    value = 3
    tensor = array_ops.ones([]) * value
    name = 'my_score'
    prefix = 'eval'
    summaries.add_scalar_summary(tensor, name, prefix, print_summary)

    output_dir = tempfile.mkdtemp('scalar_summary_no_print_test')
    summary_op = summary.merge_all()

    summary_writer = summary.FileWriter(output_dir)
    with self.cached_session() as sess:
      new_summary = sess.run(summary_op)
      summary_writer.add_summary(new_summary, 1)
      summary_writer.flush()

    self.assert_scalar_summary(output_dir, {
        '%s/%s' % (prefix, name): value
    }) 
Example #3
Source File: learning_test.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def testTrainWithNoneAsLogdirWhenUsingSummariesRaisesError(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32)
      tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_predictions, tf_labels)
      total_loss = loss_ops.get_total_loss()
      summary.scalar('total_loss', total_loss)

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)
      summary_op = summary.merge_all()

      with self.assertRaises(ValueError):
        learning.train(
            train_op, None, number_of_steps=300, summary_op=summary_op) 
Example #4
Source File: learning_test.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def testTrainWithNoneAsLogdirWhenUsingSummariesRaisesError(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)
      tf_inputs = tf.constant(self._inputs, dtype=tf.float32)
      tf_labels = tf.constant(self._labels, dtype=tf.float32)

      tf_predictions = LogisticClassifier(tf_inputs)
      loss_ops.log_loss(tf_labels, tf_predictions)
      total_loss = loss_ops.get_total_loss()
      summary.scalar('total_loss', total_loss)

      optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0)

      train_op = learning.create_train_op(total_loss, optimizer)
      summary_op = summary.merge_all()

      with self.assertRaises(ValueError):
        learning.train(
            train_op, None, number_of_steps=300, summary_op=summary_op) 
Example #5
Source File: evaluation.py    From keras-lambda with MIT License 5 votes vote down vote up
def begin(self):
    if self._summary_op is None:
      self._summary_op = summary.merge_all() 
Example #6
Source File: supervisor.py    From ctw-baseline with MIT License 5 votes vote down vote up
def _init_summary_op(self, summary_op=USE_DEFAULT):
    """Initializes summary_op.

    Args:
      summary_op: An Operation that returns a Summary for the event logs.
        If set to USE_DEFAULT, create an op that merges all the summaries.
    """
    if summary_op is Supervisor.USE_DEFAULT:
      summary_op = self._get_first_op_from_collection(ops.GraphKeys.SUMMARY_OP)
      if summary_op is None:
        summary_op = _summary.merge_all()
        if summary_op is not None:
          ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
    self._summary_op = summary_op 
Example #7
Source File: supervisor.py    From keras-lambda with MIT License 5 votes vote down vote up
def _init_summary_op(self, summary_op=USE_DEFAULT):
    """Initializes summary_op.

    Args:
      summary_op: An Operation that returns a Summary for the event logs.
        If set to USE_DEFAULT, create an op that merges all the summaries.
    """
    if summary_op is Supervisor.USE_DEFAULT:
      summary_op = self._get_first_op_from_collection(ops.GraphKeys.SUMMARY_OP)
      if summary_op is None:
        summary_op = _summary.merge_all()
        if summary_op is not None:
          ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
    self._summary_op = summary_op 
Example #8
Source File: supervisor.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def _init_summary_op(self, summary_op=USE_DEFAULT):
    """Initializes summary_op.

    Args:
      summary_op: An Operation that returns a Summary for the event logs.
        If set to USE_DEFAULT, create an op that merges all the summaries.
    """
    if summary_op is Supervisor.USE_DEFAULT:
      summary_op = self._get_first_op_from_collection(ops.GraphKeys.SUMMARY_OP)
      if summary_op is None:
        summary_op = _summary.merge_all()
        if summary_op is not None:
          ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
    self._summary_op = summary_op 
Example #9
Source File: evaluation.py    From tf-slim with Apache License 2.0 5 votes vote down vote up
def begin(self):
    if self._replace_summary_op:
      # This can still remain None if there are no summaries.
      self._summary_op = summary.merge_all()
    self._global_step = training_util.get_or_create_global_step() 
Example #10
Source File: evaluation.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def begin(self):
    if self._summary_op is None:
      self._summary_op = summary.merge_all() 
Example #11
Source File: supervisor.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _init_summary_op(self, summary_op=USE_DEFAULT):
    """Initializes summary_op.

    Args:
      summary_op: An Operation that returns a Summary for the event logs.
        If set to USE_DEFAULT, create an op that merges all the summaries.
    """
    if summary_op is Supervisor.USE_DEFAULT:
      summary_op = self._get_first_op_from_collection(ops.GraphKeys.SUMMARY_OP)
      if summary_op is None:
        summary_op = _summary.merge_all()
        if summary_op is not None:
          ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
    self._summary_op = summary_op 
Example #12
Source File: evaluation.py    From lambda-packs with MIT License 5 votes vote down vote up
def begin(self):
    if self._replace_summary_op:
      self._summary_op = summary.merge_all()
    self._global_step = variables.get_or_create_global_step() 
Example #13
Source File: supervisor.py    From lambda-packs with MIT License 5 votes vote down vote up
def _init_summary_op(self, summary_op=USE_DEFAULT):
    """Initializes summary_op.

    Args:
      summary_op: An Operation that returns a Summary for the event logs.
        If set to USE_DEFAULT, create an op that merges all the summaries.
    """
    if summary_op is Supervisor.USE_DEFAULT:
      summary_op = self._get_first_op_from_collection(ops.GraphKeys.SUMMARY_OP)
      if summary_op is None:
        summary_op = _summary.merge_all()
        if summary_op is not None:
          ops.add_to_collection(ops.GraphKeys.SUMMARY_OP, summary_op)
    self._summary_op = summary_op 
Example #14
Source File: callbacks.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def set_model(self, model):
    self.model = model
    self.sess = K.get_session()
    if self.histogram_freq and self.merged is None:
      for layer in self.model.layers:
        for weight in layer.weights:
          mapped_weight_name = weight.name.replace(':', '_')
          tf_summary.histogram(mapped_weight_name, weight)
          if self.write_grads:
            grads = model.optimizer.get_gradients(model.total_loss, weight)

            def is_indexed_slices(grad):
              return type(grad).__name__ == 'IndexedSlices'

            grads = [grad.values if is_indexed_slices(grad) else grad
                     for grad in grads]
            tf_summary.histogram('{}_grad'.format(mapped_weight_name), grads)
          if self.write_images:
            w_img = array_ops.squeeze(weight)
            shape = K.int_shape(w_img)
            if len(shape) == 2:  # dense layer kernel case
              if shape[0] > shape[1]:
                w_img = array_ops.transpose(w_img)
                shape = K.int_shape(w_img)
              w_img = array_ops.reshape(w_img, [1, shape[0], shape[1], 1])
            elif len(shape) == 3:  # convnet case
              if K.image_data_format() == 'channels_last':
                # switch to channels_first to display
                # every kernel as a separate image
                w_img = array_ops.transpose(w_img, perm=[2, 0, 1])
                shape = K.int_shape(w_img)
              w_img = array_ops.reshape(w_img,
                                        [shape[0], shape[1], shape[2], 1])
            elif len(shape) == 1:  # bias case
              w_img = array_ops.reshape(w_img, [1, shape[0], 1, 1])
            else:
              # not possible to handle 3D convnets etc.
              continue

            shape = K.int_shape(w_img)
            assert len(shape) == 4 and shape[-1] in [1, 3, 4]
            tf_summary.image(mapped_weight_name, w_img)

        if hasattr(layer, 'output'):
          tf_summary.histogram('{}_out'.format(layer.name), layer.output)
    self.merged = tf_summary.merge_all()

    if self.write_graph:
      self.writer = tf_summary.FileWriter(self.log_dir, self.sess.graph)
    else:
      self.writer = tf_summary.FileWriter(self.log_dir) 
Example #15
Source File: monitored_session.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat([
            variables.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return variables.report_uninitialized_variables(
            variables.global_variables())
      self._ready_for_local_init_op = Scaffold.get_or_default(
          'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = training_saver._get_saver_or_default()  # pylint: disable=protected-access
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self 
Example #16
Source File: monitored_session.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat([
            variables.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return variables.report_uninitialized_variables(
            variables.global_variables())
      self._ready_for_local_init_op = Scaffold.get_or_default(
          'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = Scaffold.get_or_default(
          'saver',
          ops.GraphKeys.SAVERS,
          lambda: training_saver.Saver(sharded=True, allow_empty=True,
                                       write_version=saver_pb2.SaverDef.V2))
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self 
Example #17
Source File: monitored_session.py    From keras-lambda with MIT License 4 votes vote down vote up
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat([
            variables.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return variables.report_uninitialized_variables(
            variables.global_variables())
      self._ready_for_local_init_op = Scaffold.get_or_default(
          'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = Scaffold.get_or_default(
          'saver',
          ops.GraphKeys.SAVERS,
          lambda: training_saver.Saver(sharded=True, allow_empty=True,
                                       write_version=saver_pb2.SaverDef.V2))
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self 
Example #18
Source File: monitored_session.py    From lambda-packs with MIT License 4 votes vote down vote up
def finalize(self):
    """Creates operations if needed and finalizes the graph."""
    if self._init_op is None:
      def default_init_op():
        return control_flow_ops.group(
            variables.global_variables_initializer(),
            resources.initialize_resources(resources.shared_resources()))
      self._init_op = Scaffold.get_or_default(
          'init_op',
          ops.GraphKeys.INIT_OP,
          default_init_op)
    if self._ready_op is None:
      def default_ready_op():
        return array_ops.concat([
            variables.report_uninitialized_variables(),
            resources.report_uninitialized_resources()
        ], 0)
      self._ready_op = Scaffold.get_or_default(
          'ready_op', ops.GraphKeys.READY_OP,
          default_ready_op)
    if self._ready_for_local_init_op is None:
      def default_ready_for_local_init_op():
        return variables.report_uninitialized_variables(
            variables.global_variables())
      self._ready_for_local_init_op = Scaffold.get_or_default(
          'ready_for_local_init_op', ops.GraphKeys.READY_FOR_LOCAL_INIT_OP,
          default_ready_for_local_init_op)
    if self._local_init_op is None:
      self._local_init_op = Scaffold.get_or_default(
          'local_init_op', ops.GraphKeys.LOCAL_INIT_OP,
          Scaffold._default_local_init_op)
    if self._summary_op is None:
      self._summary_op = Scaffold.get_or_default('summary_op',
                                                 ops.GraphKeys.SUMMARY_OP,
                                                 summary.merge_all)
    # pylint: disable=g-long-lambda
    if self._saver is None:
      self._saver = training_saver._get_saver_or_default()  # pylint: disable=protected-access
    # pylint: enable=g-long-lambda
    self._saver.build()

    ops.get_default_graph().finalize()
    return self