Python utils.dataset.Dataset() Examples
The following are 9
code examples of utils.dataset.Dataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.dataset
, or try the search function
.
Example #1
Source File: eval_lfw.py From Probabilistic-Face-Embeddings with MIT License | 7 votes |
def main(args): paths = Dataset(args.dataset_path)['abspath'] print('%d images to load.' % len(paths)) assert(len(paths)>0) # Load model files and config file network = Network() network.load_model(args.model_dir) images = preprocess(paths, network.config, False) # Run forward pass to calculate embeddings mu, sigma_sq = network.extract_feature(images, args.batch_size, verbose=True) feat_pfe = np.concatenate([mu, sigma_sq], axis=1) lfwtest = LFWTest(paths) lfwtest.init_standard_proto(args.protocol_path) accuracy, threshold = lfwtest.test_standard_proto(mu, utils.pair_euc_score) print('Euclidean (cosine) accuracy: %.5f threshold: %.5f' % (accuracy, threshold)) accuracy, threshold = lfwtest.test_standard_proto(feat_pfe, utils.pair_MLS_score) print('MLS accuracy: %.5f threshold: %.5f' % (accuracy, threshold))
Example #2
Source File: train.py From WarpGAN with MIT License | 6 votes |
def test(network, config, log_dir, step): # Initialize testing if not hasattr(test, 'images'): testset = Dataset(config.test_dataset_path, prefix=config.data_prefix) random_indices = np.random.permutation(np.where(testset.is_photo)[0])[:64] test.images = testset.images[random_indices].astype(np.object) test.images = preprocess(test.images, config, is_training=False) output_dir = os.path.join(log_dir, 'samples') if not os.path.isdir(output_dir): os.makedirs(output_dir) # scales = np.indices((8,8), dtype=np.float32)[1] * 5 scales = np.ones((8,8)) scales = scales.flatten() test_results = network.generate_BA(test.images, scales, config.batch_size) utils.save_manifold(test_results, os.path.join(output_dir, '{}.jpg'.format(step)))
Example #3
Source File: main.py From action-sets with MIT License | 6 votes |
def train(label2index, index2label): # list of train videos with open('data/split1.train', 'r') as f: video_list = f.read().split('\n')[0:-1] # read train set print('read data...') dataset = Dataset('data', video_list, label2index) print('done') # train the network trainer = Trainer(dataset) trainer.train(batch_size = 512, n_epochs = 2, learning_rate = 0.1) trainer.save_model('results/net.model') # estimate prior, loss-based lengths, and monte-carlo grammar prior = estimate_prior(dataset) mean_lengths = loss_based_lengths(dataset) grammar = monte_carlo_grammar(dataset, mean_lengths, index2label) np.savetxt('results/prior', prior) np.savetxt('results/mean_lengths', mean_lengths, fmt='%.3f') with open('results/grammar', 'w') as f: f.write('\n'.join(grammar) + '\n') ################################################################################ ### INFERENCE ### ################################################################################
Example #4
Source File: utils.py From VAE-GMVAE with Apache License 2.0 | 5 votes |
def load_FREY(): data_path = '../data/frey_rawface.mat' mat = loadmat(data_path) data = mat['ff'] data = np.transpose(data) # [num_images, dimension] data = np.array(data, dtype=np.float32) for i in range(data.shape[0]): min_value = np.min(data[i,:]) max_value = np.max(data[i,:]) num = (data[i,:] - min_value) den = (max_value - min_value) data[i,:] = num/den data_dim = data.shape[1] num_images = data.shape[0] train_size = int(num_images*0.8) valid_size = int(num_images*0.1) test_size = num_images - train_size - valid_size x_train = data[:train_size] x_valid = data[train_size:(train_size+valid_size)] x_test = data[(train_size+valid_size):] x_train = np.reshape(x_train, [-1, 28, 20, 1]) x_valid = np.reshape(x_valid, [-1, 28, 20, 1]) x_test = np.reshape(x_test, [-1, 28, 20, 1]) x_train_labels = np.zeros(x_train.shape[0]) x_valid_labels = np.zeros(x_valid.shape[0]) x_test_labels = np.zeros(x_test.shape[0]) train_dataset = Dataset(x_train, x_train_labels) valid_dataset = Dataset(x_valid, x_valid_labels) test_dataset = Dataset(x_test, x_test_labels) print('Train Data: ', train_dataset.x.shape) print('Valid Data: ', valid_dataset.x.shape) print('Test Data: ', test_dataset.x.shape) return train_dataset, valid_dataset, test_dataset
Example #5
Source File: utils.py From VAE-GMVAE with Apache License 2.0 | 5 votes |
def load_MNIST(): data_path = '../data/MNIST_data' data = input_data.read_data_sets(data_path, one_hot=False) x_train_aux = data.train.images x_test = data.test.images data_dim = data.train.images.shape[1] n_train = data.train.images.shape[0] train_size = int(n_train * 0.8) valid_size = n_train - train_size x_valid, x_train = merge_datasets(x_train_aux, data_dim, train_size, valid_size) print('Data loaded. ', time.localtime().tm_hour, ':', time.localtime().tm_min, 'h') # logs.write('\tData loaded ' + str(time.localtime().tm_hour) +':' + str(time.localtime().tm_min) + 'h\n') x_train = np.reshape(x_train, [-1, 28, 28, 1]) x_valid = np.reshape(x_valid, [-1, 28, 28, 1]) x_test = np.reshape(x_test, [-1, 28, 28, 1]) train_dataset = Dataset(x_train, data.train.labels) valid_dataset = Dataset(x_valid, data.train.labels) test_dataset = Dataset(x_test, data.test.labels) print('Train Data: ', train_dataset.x.shape) print('Valid Data: ', valid_dataset.x.shape) print('Test Data: ', test_dataset.x.shape) return train_dataset, valid_dataset, test_dataset
Example #6
Source File: eval_ijb.py From Probabilistic-Face-Embeddings with MIT License | 5 votes |
def main(args): network = Network() network.load_model(args.model_dir) proc_func = lambda x: preprocess(x, network.config, False) testset = Dataset(args.dataset_path) if args.protocol == 'ijba': tester = IJBATest(testset['abspath'].values) tester.init_proto(args.protocol_path) elif args.protocol == 'ijbc': tester = IJBCTest(testset['abspath'].values) tester.init_proto(args.protocol_path) else: raise ValueError('Unkown protocol. Only accept "ijba" or "ijbc".') mu, sigma_sq = network.extract_feature(tester.image_paths, args.batch_size, proc_func=proc_func, verbose=True) features = np.concatenate([mu, sigma_sq], axis=1) print('---- Average pooling') aggregate_templates(tester.verification_templates, features, 'mean') TARs, std, FARs = tester.test_verification(force_compare(utils.pair_euc_score)) for i in range(len(TARs)): print('TAR: {:.5} +- {:.5} FAR: {:.5}'.format(TARs[i], std[i], FARs[i])) print('---- Uncertainty pooling') aggregate_templates(tester.verification_templates, features, 'PFE_fuse') TARs, std, FARs = tester.test_verification(force_compare(utils.pair_euc_score)) for i in range(len(TARs)): print('TAR: {:.5} +- {:.5} FAR: {:.5}'.format(TARs[i], std[i], FARs[i])) print('---- MLS comparison') aggregate_templates(tester.verification_templates, features, 'PFE_fuse_match') TARs, std, FARs = tester.test_verification(force_compare(utils.pair_MLS_score)) for i in range(len(TARs)): print('TAR: {:.5} +- {:.5} FAR: {:.5}'.format(TARs[i], std[i], FARs[i]))
Example #7
Source File: main.py From action-sets with MIT License | 5 votes |
def infer(label2index, index2label, n_threads): # load models log_prior = np.log( np.loadtxt('results/prior') ) grammar = PathGrammar('results/grammar', label2index) length_model = PoissonModel('results/mean_lengths', max_length = 2000) forwarder = Forwarder('results/net.model') # Viterbi decoder (max_hypotheses = n: at each time step, prune all hypotheses worse than the top n) viterbi_decoder = Viterbi(grammar, length_model, frame_sampling = 30, max_hypotheses = 50000 ) # create list of test videos with open('data/split1.test', 'r') as f: video_list = f.read().split('\n')[0:-1] # forward each video log_probs = dict() queue = mp.Queue() for video in video_list: queue.put(video) dataset = Dataset('data', [video], label2index) log_probs[video] = forwarder.forward(dataset) - log_prior log_probs[video] = log_probs[video] - np.max(log_probs[video]) # Viterbi decoding procs = [] for i in range(n_threads): p = mp.Process(target = decode, args = (queue, log_probs, viterbi_decoder, index2label) ) procs.append(p) p.start() for p in procs: p.join() ### helper function for parallelized Viterbi decoding ##########################
Example #8
Source File: train.py From WarpGAN with MIT License | 4 votes |
def main(args): # I/O config_file = args.config_file config = imp.load_source('config', config_file) if args.name: config.name = args.name trainset = Dataset(config.train_dataset_path, prefix=config.data_prefix) network = WarpGAN() network.initialize(config, trainset.num_classes) # Initalization for running if config.save_model: log_dir = utils.create_log_dir(config, config_file) summary_writer = tf.summary.FileWriter(log_dir, network.graph) if config.restore_model: network.restore_model(config.restore_model, config.restore_scopes) proc_func = lambda images: preprocess(images, config, True) trainset.start_batch_queue(config.batch_size, proc_func=proc_func) # Main Loop print('\nStart Training\nname: {}\n# epochs: {}\nepoch_size: {}\nbatch_size: {}\n'.format( config.name, config.num_epochs, config.epoch_size, config.batch_size)) global_step = 0 start_time = time.time() for epoch in range(config.num_epochs): if epoch == 0: test(network, config, log_dir, global_step) # Training for step in range(config.epoch_size): # Prepare input learning_rate = utils.get_updated_learning_rate(global_step, config) batch = trainset.pop_batch_queue() wl, sm, global_step = network.train(batch['images'], batch['labels'], batch['is_photo'], learning_rate, config.keep_prob) wl['lr'] = learning_rate # Display if step % config.summary_interval == 0: duration = time.time() - start_time start_time = time.time() utils.display_info(epoch, step, duration, wl) if config.save_model: summary_writer.add_summary(sm, global_step=global_step) # Testing test(network, config, log_dir, global_step) # Save the model if config.save_model: network.save_model(log_dir, global_step)
Example #9
Source File: train.py From Probabilistic-Face-Embeddings with MIT License | 4 votes |
def main(args): # I/O config_file = args.config_file config = imp.load_source('config', config_file) if args.name: config.name = args.name trainset = Dataset(config.train_dataset_path) network = Network() network.initialize(config, trainset.num_classes) # Initalization for running log_dir = utils.create_log_dir(config, config_file) summary_writer = tf.summary.FileWriter(log_dir, network.graph) if config.restore_model: network.restore_model(config.restore_model, config.restore_scopes) proc_func = lambda images: preprocess(images, config, True) trainset.start_batch_queue(config.batch_format, proc_func=proc_func) # Main Loop print('\nStart Training\nname: {}\n# epochs: {}\nepoch_size: {}\nbatch_size: {}\n'.format( config.name, config.num_epochs, config.epoch_size, config.batch_format['size'])) global_step = 0 start_time = time.time() for epoch in range(config.num_epochs): # Training for step in range(config.epoch_size): # Prepare input learning_rate = utils.get_updated_learning_rate(global_step, config) batch = trainset.pop_batch_queue() wl, sm, global_step = network.train(batch['image'], batch['label'], learning_rate, config.keep_prob) wl['lr'] = learning_rate # Display if step % config.summary_interval == 0: duration = time.time() - start_time start_time = time.time() utils.display_info(epoch, step, duration, wl) summary_writer.add_summary(sm, global_step=global_step) # Save the model network.save_model(log_dir, global_step)