Python xarray.zeros_like() Examples
The following are 4
code examples of xarray.zeros_like().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
xarray
, or try the search function
.
Example #1
Source File: visualization.py From minian with GNU General Public License v3.0 | 6 votes |
def __init__(self, shiftds, sampling=2, pct_thres=99.9, on=0): self.shiftds = shiftds self.temps = shiftds['temps'] self.on = on self.pct_thres = pct_thres self.hh = self.temps.sizes['height'] self.ww = self.temps.sizes['width'] self.mask = xr.zeros_like(self.temps, dtype=bool) self.ls_anm = np.unique(shiftds.coords['animal'].values) self.ls_ss = np.unique(shiftds.coords['session'].values) Selection = Stream.define( 'selection', anm=param.Selector(self.ls_anm), ss=param.Selector(self.ls_ss)) self.str_sel = Selection(anm=self.ls_anm[0], ss=self.ls_ss[0]) # self.sampling = sampling self.str_box = BoxEdit() self.box = hv.DynamicMap(self._box, streams=[self.str_box]) self.box = self.box.opts( style=dict(fill_alpha=0.3, line_color='white')) self.wgts = self._widgets() self.hvobjs = self._get_objs()
Example #2
Source File: distributed.py From cosima-cookbook with Apache License 2.0 | 6 votes |
def compute_by_block(dsx): """ """ # determine index key for each chunk slices = [] for chunks in dsx.chunks: L = [0,] + list(np.cumsum(chunks)) slices.append( [slice(a, b) for a,b in (zip(L[:-1], L[1:]))] ) indexes = list(product(*slices)) # allocate memory to receive result if isinstance(dsx, xr.DataArray): result = xr.zeros_like(dsx).load() else: result = np.zeros(dsx.shape) #evaluate each chunk one at a time for index in tqdm_notebook(indexes, leave=False): block = dsx.__getitem__(index).compute() result.__setitem__(index, block) return result
Example #3
Source File: test_statistics.py From esmlab with Apache License 2.0 | 5 votes |
def test_dimension_mismatch(function): darr = xr.DataArray([[1, 2], [3, 4]], dims=['x', 'y']) w = xr.zeros_like(darr) res = function(darr, dim=['x', 'z'], weights=w) xr.testing.assert_equal(res, darr)
Example #4
Source File: cnmf.py From minian with GNU General Public License v3.0 | 5 votes |
def update_spatial_perpx(y, alpha, sub, C): res = np.zeros_like(sub, dtype=y.dtype) if np.sum(sub) > 0: C = C[:, sub] clf = LassoLars(alpha=alpha, positive=True) coef = clf.fit(C, y).coef_ res[np.where(sub)[0]] = coef return res