Python keras.losses.mean_squared_error() Examples
The following are 13
code examples of keras.losses.mean_squared_error().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.losses
, or try the search function
.
Example #1
Source File: auto_encoder.py From pyod with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, hidden_neurons=None, hidden_activation='relu', output_activation='sigmoid', loss=mean_squared_error, optimizer='adam', epochs=100, batch_size=32, dropout_rate=0.2, l2_regularizer=0.1, validation_size=0.1, preprocessing=True, verbose=1, random_state=None, contamination=0.1): super(AutoEncoder, self).__init__(contamination=contamination) self.hidden_neurons = hidden_neurons self.hidden_activation = hidden_activation self.output_activation = output_activation self.loss = loss self.optimizer = optimizer self.epochs = epochs self.batch_size = batch_size self.dropout_rate = dropout_rate self.l2_regularizer = l2_regularizer self.validation_size = validation_size self.preprocessing = preprocessing self.verbose = verbose self.random_state = random_state # default values if self.hidden_neurons is None: self.hidden_neurons = [64, 32, 32, 64] # Verify the network design is valid if not self.hidden_neurons == self.hidden_neurons[::-1]: print(self.hidden_neurons) raise ValueError("Hidden units should be symmetric") self.hidden_neurons_ = self.hidden_neurons check_parameter(dropout_rate, 0, 1, param_name='dropout_rate', include_left=True)
Example #2
Source File: metrics.py From voxelmorph with GNU General Public License v3.0 | 5 votes |
def l2(y_true, y_pred): """ L2 metric (MSE) """ return losses.mean_squared_error(y_true, y_pred) ############################################################################### # Helper Functions ###############################################################################
Example #3
Source File: keras_model.py From alphazero with Apache License 2.0 | 5 votes |
def build(args): model = build_model(args) model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=SGD(lr=args['learning_rate'], momentum = args['momentum']), #optimizer='adam', loss_weights=[0.5, 0.5]) return model
Example #4
Source File: test_keras2.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_updatable_model_flag_mse_adam(self): """ Test to ensure that respect_trainable is honored during convert of a model with mean squared error loss and the Adam optimizer. """ import coremltools from keras.layers import Dense from keras.losses import mean_squared_error from keras.optimizers import Adam input = ["data"] output = ["output"] # Again, this should give an updatable model. updatable = Sequential() updatable.add(Dense(128, input_shape=(16,))) updatable.add(Dense(10, name="foo", activation="softmax", trainable=True)) updatable.compile( loss=mean_squared_error, optimizer=Adam(lr=1.0, beta_1=0.5, beta_2=0.75, epsilon=0.25), metrics=["accuracy"], ) cml = coremltools.converters.keras.convert( updatable, input, output, respect_trainable=True ) spec = cml.get_spec() self.assertTrue(spec.isUpdatable) layers = spec.neuralNetwork.layers self.assertIsNotNone(layers[1].innerProduct) self.assertTrue(layers[1].innerProduct) self.assertTrue(layers[1].isUpdatable) self.assertEqual(len(spec.neuralNetwork.updateParams.lossLayers), 1) adopt = spec.neuralNetwork.updateParams.optimizer.adamOptimizer self.assertEqual(adopt.learningRate.defaultValue, 1.0) self.assertEqual(adopt.beta1.defaultValue, 0.5) self.assertEqual(adopt.beta2.defaultValue, 0.75) self.assertEqual(adopt.eps.defaultValue, 0.25)
Example #5
Source File: model_connect4.py From connect4-alpha-zero with MIT License | 5 votes |
def objective_function_for_value(y_true, y_pred): return mean_squared_error(y_true, y_pred)
Example #6
Source File: custom.py From DLWP with MIT License | 5 votes |
def latitude_weighted_loss(loss_function=mean_squared_error, lats=None, output_shape=(), axis=-2, weighting='cosine'): """ Create a loss function that weights inputs by a function of latitude before calculating the loss. :param loss_function: method: Keras loss function to apply after the weighting :param lats: ndarray: 1-dimensional array of latitude coordinates :param output_shape: tuple: shape of expected model output :param axis: int: latitude axis in model output shape :param weighting: str: type of weighting to apply. Options are: cosine: weight by the cosine of the latitude (default) midlatitude: weight by the cosine of the latitude but also apply a 25% reduction to the equator and boost to the mid-latitudes :return: callable loss function """ if weighting not in ['cosine', 'midlatitude']: raise ValueError("'weighting' must be one of 'cosine' or 'midlatitude'") if lats is not None: lat_tensor = K.zeros(lats.shape) lat_tensor.assign(K.cast_to_floatx(lats[:])) weights = K.cos(lat_tensor * np.pi / 180.) if weighting == 'midlatitude': weights = weights + 0.5 * K.pow(K.sin(lat_tensor * 2 * np.pi / 180.), 2.) weight_shape = output_shape[axis:] for d in weight_shape[1:]: weights = K.expand_dims(weights, axis=-1) weights = K.repeat_elements(weights, d, axis=-1) else: weights = K.ones(output_shape) def lat_loss(y_true, y_pred): return loss_function(y_true * weights, y_pred * weights) return lat_loss
Example #7
Source File: custom.py From DLWP with MIT License | 5 votes |
def anomaly_correlation(y_true, y_pred, mean=0., regularize_mean='mse', reverse=True): """ Calculate the anomaly correlation. FOR NOW, ASSUMES THAT THE CLIMATOLOGICAL MEAN IS 0, AND THEREFORE REQUIRES DATA TO BE SCALED TO REMOVE SPATIALLY-DEPENDENT MEAN. :param y_true: Tensor: target values :param y_pred: Tensor: model-predicted values :param mean: float: subtract this global mean from all predicted and target array values. IGNORED FOR NOW. :param regularize_mean: str or None: if not None, also penalizes a form of mean squared error: global: penalize differences in the global mean spatial: penalize differences in spatially-averaged mean (last two dimensions) mse: penalize the mean squared error mae: penalize the mean absolute error :param reverse: bool: if True, inverts the loss so that -1 is the target score :return: float: anomaly correlation loss """ if regularize_mean is not None: assert regularize_mean in ['global', 'spatial', 'mse', 'mae'] a = (K.mean(y_pred * y_true) / K.sqrt(K.mean(K.square(y_pred)) * K.mean(K.square(y_true)))) if regularize_mean is not None: if regularize_mean == 'global': m = K.abs((K.mean(y_true) - K.mean(y_pred)) / K.mean(y_true)) elif regularize_mean == 'spatial': m = K.mean(K.abs((K.mean(y_true, axis=[-2, -1]) - K.mean(y_pred, axis=[-2, -1])) / K.mean(y_true, axis=[-2, -1]))) elif regularize_mean == 'mse': m = mean_squared_error(y_true, y_pred) elif regularize_mean == 'mae': m = mean_absolute_error(y_true, y_pred) if reverse: if regularize_mean is not None: return m - a else: return -a else: if regularize_mean: return a - m else: return a
Example #8
Source File: _base.py From faceswap with GNU General Public License v3.0 | 5 votes |
def loss_dict(self): """ Return the loss dict """ loss_dict = dict(mae=losses.mean_absolute_error, mse=losses.mean_squared_error, logcosh=losses.logcosh, smooth_loss=generalized_loss, l_inf_norm=l_inf_norm, ssim=DSSIMObjective(), gmsd=gmsd_loss, pixel_gradient_diff=gradient_loss) return loss_dict
Example #9
Source File: losses.py From cyclegan_keras with The Unlicense | 5 votes |
def discriminator_loss(y_true, y_pred): loss = mean_squared_error(y_true, y_pred) is_large = k.greater(loss, k.constant(_disc_train_thresh)) # threshold is_large = k.cast(is_large, k.floatx()) return loss * is_large # binary threshold the loss to prevent overtraining the discriminator
Example #10
Source File: model.py From reversi-alpha-zero with MIT License | 5 votes |
def objective_function_for_value(y_true, y_pred): return mean_squared_error(y_true, y_pred)
Example #11
Source File: aiplayer.py From alpha_zero_othello with MIT License | 5 votes |
def objective_function_for_value(y_true, y_pred): return mean_squared_error(y_true, y_pred)
Example #12
Source File: helper.py From Benchmarks with MIT License | 5 votes |
def combined_loss(y_true, y_pred): ''' Uses a combination of mean_squared_error and an L1 penalty on the output of AE ''' return mse(y_true, y_pred) + 0.01*mae(0, y_pred)
Example #13
Source File: custom.py From DLWP with MIT License | 4 votes |
def anomaly_correlation_loss(mean=None, regularize_mean='mse', reverse=True): """ Create a Keras loss function for anomaly correlation. :param mean: ndarray or None: if not None, must be an array with the same shape as the expected prediction, except that the first (batch) axis should have a dimension of 1. :param regularize_mean: str or None: if not None, also penalizes a form of mean squared error: global: penalize differences in the global mean spatial: penalize differences in spatially-averaged mean (last two dimensions) mse: penalize the mean squared error mae: penalize the mean absolute error :param reverse: bool: if True, inverts the loss so that -1 is the (minimized) target score. Must be True if regularize_mean is not None. :return: method: anomaly correlation loss function """ if mean is not None: assert len(mean.shape) > 1 assert mean.shape[0] == 1 mean_tensor = K.variable(mean, name='anomaly_correlation_mean') if regularize_mean is not None: assert regularize_mean in ['global', 'spatial', 'mse', 'mae'] reverse = True def acc_loss(y_true, y_pred): if mean is not None: a = (K.mean((y_pred - mean_tensor) * (y_true - mean_tensor)) / K.sqrt(K.mean(K.square((y_pred - mean_tensor))) * K.mean(K.square((y_true - mean_tensor))))) else: a = (K.mean(y_pred * y_true) / K.sqrt(K.mean(K.square(y_pred)) * K.mean(K.square(y_true)))) if regularize_mean is not None: if regularize_mean == 'global': m = K.abs((K.mean(y_true) - K.mean(y_pred)) / K.mean(y_true)) elif regularize_mean == 'spatial': m = K.mean(K.abs((K.mean(y_true, axis=[-2, -1]) - K.mean(y_pred, axis=[-2, -1])) / K.mean(y_true, axis=[-2, -1]))) elif regularize_mean == 'mse': m = mean_squared_error(y_true, y_pred) elif regularize_mean == 'mae': m = mean_absolute_error(y_true, y_pred) if reverse: if regularize_mean is not None: return m - a else: return -a else: if regularize_mean: return a - m else: return a return acc_loss # Compatibility names